簡易檢索 / 詳目顯示

研究生: 陳怡潔
Chen, Yi-Jie
論文名稱: 利用邊界元方法評價外匯障礙選擇權
Pricing foreign barrier option with Boundary Element Method
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 邊界元方法主值積分補償金雙邊界障礙選擇權外匯選擇權
外文關鍵詞: boundary element method, principal value, rebate, double barrier option, foreign currency option
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究報告主要是改善邊界元方法在有支付補償金的連續型外匯雙障礙失效選擇權之定價問題。而此選擇權的合約內容有上下共兩個障礙價格,在到期日之前,若標的匯價碰觸到任何一邊的障礙價格時,則此選擇權立即失效,並且賣方必須支付買方一筆合約內簽定的報酬以作補償。

    在本文中,首先介紹選擇權.外匯選擇權.障礙選擇權,接下來以Black-Scholes Model而衍生於外匯選擇權的Garman-Kohlhagen Model為數學模型,之後轉換成熱傳導邊界問題,並且設計一邊界元方法求出此邊界值問題,最後解得有支付補償金的外匯雙障礙失效選擇權的價格。

    本文最後利用此邊界元方法實際計算出外匯雙障礙失效選擇權。

    This study mainly improves the boundary element method on pricing a continuous type foreign double knock-out barrier option. That is, there are upper and lower barrier prices in this option. The double barrier option is knock-out, if the underlying foreign currency price touches any of them before the expiration day. And the seller must pay the buyer rebate which was decided in the contract.
    In this paper, we first introduce options, foreign currency options,and barrier options. The mathematical model is Garman-Kohlhagen Model with foreign currency options which is developed from Black-Scholes Model, then it is converted to a boundary value problem with the heat equation. And designing a boundary element method deal with the boundary value problem to get a foreign double knock-out barrier option price with rebate.
    Finally, pricing a foreign double knock-out barrier call value by the boundary element method of this paper.

    第一章:緒論...........................................................................1 1.1:引言.................................................................................1 1.2:選擇權之基本介紹....................................................4 1.3:外匯選擇權之介紹....................................................6 1.4:障礙選擇權之介紹....................................................8 1.5:外匯飄移率與波動率...............................................11 1.6:文獻探討.......................................................................12 第二章:數學模型.................................................................13 2.1:外匯選擇權之Black-Scholes微分方程式............13 2.2:邊界問題之轉換.........................................................17 2.3:轉換成Heat equation之過程.....................................18 2.4:積分表現法與邊界積分方程..................................19 第三章:數值方法..................................................................29 3.1:邊界元方法...................................................................29 3.2:邊界元方法準確度.....................................................45 3.3:雙障礙選擇權價格之方法.......................................53 第四章:數值例.......................................................................55 4.1:實例分析在有飄移率之下的波動率....................55 4.2:外匯選擇權之評價.....................................................56 第五章:結論...........................................................................59 參考文獻.................................................................................60

    [1] John C.Hull," Options,Futures,and other derivatives sixth edition",Pearson Education,United State of American,2-5,2006
    [2] 陳松男,"基礎選擇權與期貨",新陸書局,台北市,2003
    [3] 葉芳柏.葉芝宇,"財務工程基礎理論與Excel實務模擬",全華科技圖書,6.8-7.7,2005
    [4] 黃仁德,"匯率衍生性金融商品",台灣金融研訊院,台北市,87,2003
    [5] 董夢雲,"外匯市場:衍生工具與風險管理",新陸書局,台北市,286,1993
    [6] 張竣傑 譯,"期貨與選擇權概念及應用",學富文化事業,台北市,662,2003
    [7] 經濟部,"中小企業服務報導:企業因應匯率風險之道",經濟部中小企業處,2,2005.4
    [8] 陳君儀,"利用匯率選擇權進行外匯避險之策略簡介",華銀金融市場行銷部,12
    [9] Black F. and M. Scholes,"The Pricing of Options and Coporate Liabilities",Journal of political Economy 3,637-654,1973
    [10] Boyle,P.P.,and S.H. Lau,"Bumping Up Against the barrier with the Binomial Method",Journal of Derivatives 2,6-14,1994
    [11] Boyle,P.,and Y.S. Tina,"An Explicit Finite Difference Approach to the Pricing of Barrier Options",Applied Mathematical Finance 5,17-43,1998
    [12] Ckeuk. T.H.F.,and T.C.F Vorst,"Complex Barrier options",Journal of Derivatives 4,8-22,1995
    [13] Cox,J.C.,S. A. Ross,and M. Rubinstein,"Option Pricing: A Simplified Approach",Journal of Financial Ecomomics 7,229-264,1979
    [14] Cox,J.,and M. Rubinstein,"Options Markets",Prentice-Hall
    [15] Geman,H.,and M. Yor,"Pricing and Hedging Double-Barrier Options: A Probabilistic Approach",Mathematical Finance Vol.6 No.4,365-237,1996
    [16] Kunitomo, N.,and M. Ikeda,"Pricing Options with Curved Boundaries",Mathematical Finance Vol.2 No.4,275-298,1992
    [17] Merton,R. C.,"Theory of Rational Option Pricing",Bell Journal of Economics and Management Science 4,141-183,1973
    [18] Pelsser,A.,"Pricing double barrier options using Laplace transforms",Finance and Stochastics 4,95-104,2000
    [19] Reiner,E.,and M. Rubinstein,"Breaking Down the Barriers",RISK 4,28-35,1991
    [20] Ritchken,P.,"On Pricing Barrier Options",Journal of Derivatives 3,19-28,1995
    [21] 陳貞宇,"應用邊界元素法評價雙邊界障礙選擇權",成功大學應用數學所,2006
    [22] 孫雅玲,"雙障礙選擇權之評價",成功大學應用數學所,2006
    [23] 鄭閔中,"間斷性雙重障礙外匯選擇權之評價",成功大學財務金融所,2006
    [24] 洪維恩,"C語言教學手冊",博碩文化,台北市,2000
    [25] 黃俊銘 譯,"數值方法-使用Matlab程式語言",台灣培生教育,台北市,2003

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE