簡易檢索 / 詳目顯示

研究生: 郭典愷
Guo, Dian-Kai
論文名稱: 洛夫波於橫斷面等向性介質與地震超材料之波傳互制行為
Design and numerical simulation of seismic metamaterials with Love waves in transversely isotropic media
指導教授: 陳東陽
Chen, Tung-Yang
共同指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 120
中文關鍵詞: 洛夫波橫斷面等向性地震超材料
外文關鍵詞: Love wave, transverse isotropy, seismic metamaterials
相關次數: 點閱:181下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,不少學者投入地震超材料的領域,開始探索及研究如何有效衰減地震表面波,而本文則探討表面波中具水平向振動、且僅在由較硬之半無限域與較軟之導引層所組成的層狀介質中傳遞的洛夫波。首先,有別於以往較簡化之等向性波傳介質假設,本文以橫斷面等向性材料來模擬廣大地球表面中的沉積岩,證實橫向與縱向之剪力模數能有效控制洛夫波於導引層與半無限域之波傳行為。此外,本文亦研究了由地層錯動造成之初始應力對洛夫波之波傳影響。本文從複合材料力學中的平均值理論出發,在導引層表面加入由水平向共振器組成之地震超材料,於洛夫波之頻散關係中成功產生帶隙,再來引入簡廷宇等人(2019)設計之地震超材料單元結構,發現較大之橫向剪力模數能造成較高的帶隙上邊界頻率、進而導致更為寬廣的頻帶,最後,以有限元素軟體進行三維全域模擬,其結果顯示當地震超材料之深度與導引層厚度相當時,能夠大幅減少帶隙內表面區域之位移反應。

    We investigate the propagation of shear polarized surface wave, in the form of Love waves, with mechanical resonators on the top of semi-infinite layered media. Both the top soft guiding layer and the semi-infinite substrate, are taken to be transversely isotropic, in a simulation of a type of surface wave in the seismic ground motion of the Earth. In addition, the effect of initial stresses in the soft layer is also examined. The objective of this work is to explore the possibility to control the Love waves dispersive behavior by varying the properties of transversely isotropic phases and the resonators mechanical parameters. We also perform 3D finite element simulations to demonstrate the performance of effects. The results suggest that transverse isotropy has little influences on the width of bandgaps, but is sufficient to control the propagation behavior of Love waves with specific values of shear moduli. It is also observed that when the depth of seismic metamaterials is extended to the half-space from the top surface, that is, the height of resonators nearly equals to the thickness of the upper soft guiding layer, the magnitude of displacement fields on the surface in the protected area can be significantly attenuated.

    Abstract i 中文摘要 iii Acknowledgements v Table of Contents vii List of tables ix List of Figures xi Symbols 1 Chapter 1 Introduction 3 1.1 Background and literature review 3 1.2 Motivation and objective 7 1.3 Overview of thesis 8 Chapter 2 Propagation of Love waves 9 2.1 Types of seismic waves 9 2.2 Fundamental concepts of wave propagation 14 2.3 Propagation of Love waves 18 Chapter 3 Love waves in transversely isotropic media 27 3.1 Transversely isotropic solids 29 3.2 Love waves with transversely isotropic layer and half-space 34 3.3 Love waves with transversely isotropic layer and isotropic half-space 44 3.4 Love waves with isotropic layer and transversely isotropic half-space 50 3.5 Numerical simulation using finite element method 56 Chapter 4 Love waves coupled with seismic metamaterials 65 4.1 Control of Love waves with horizontal resonators or metasurfaces 65 4.2 Numerical simulation of Love waves interacting with seismic metamaterials 73 Chapter 5 Conclusions and future perspectives 91 5.1 Conclusions 91 5.2 Future perspectives 92 Reference 95 Appendix A. Waveguiding by locally resonant metasurface 103 Appendix B. Brillouin zone 107 Appendix C. Control of Love waves with a forest of trees 109 Appendix D. Love waves with initial stress in the layer 114

    Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V, Enoch, S. and Guenneau, S., Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19, 063022 (2017).

    Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S., Seismic waves damping with arrays of inertial resonators, Extreme Mechanics Letters 8, 30-37 (2016).

    Achenbach, J. D. and Balogun, O., Anti-plane surface waves on a half-space with depth-dependent properties, Wave Motion 47, 59-65 (2010).

    Achenbach, J. D., Wave Propagation in Elastic Solids, North Holland (1973).

    Addouche, M., Al-Lethawe, M. A., Elayouch, A. and Khelif, A. Subwavelength waveguiding of surface phonons in pillars-based phononic crystal. AIP Adv. 4, 124303 (2014).

    Aki, K. and Richards, P. G., Quantitative Seismology, University Science Books, California (2002).

    Al-Lethawe, M., Addouche, M., Benchabane, S., Laude, V. and Khelif, A. Guidance of surface elastic waves along a linear chain of pillars. AIP Adv. 6, 121708 (2016).

    Alu, A., Silveirinha, M. G., Salandrino, A. and Engheta, N., Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75, 155410 (2007).

    Baghai-Wadji, A.R., Plessky, V.P. and Simonian, A.V., Propagation of Rayleigh-type SAW in periodic structures with resonating elements, Soviet Physics. Acoustics, 38(5), pp.442-449 (1992).

    Benchabane, S., Khelif, A., Rauch, J.-Y., Robert, L., Laude, V., Evidence for complete surface wave band gap in a piezoelectric phononic crystal, Phys. Rev. E 73, 065601(R) (2006).

    Biot, M.A., Mechanics of Incremental Deformations, John Wiley, New York (1965).

    Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern, Springer-Verlag (1929).

    Boechler, N. et al. Interaction of a contact resonance of microspheres with surface acoustic waves. Phys. Review Letters 111, 036103 (2013).

    Born, M. and Wolf, E., Principles of Optics, Pergamon Press, Oxford (1980).

    Brilouin, L., Wave Propagation in Periodic Structures, Dover Publications (1953).

    Brûlé, S. and Cuira, F., Association Française de Normalisation (AFNOR, en: French Standardization Association) (2018).

    Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S., Experiments on seismic metamaterials: molding surface waves, Physical Review Letters 112, 133901 (2014).

    Brun, M., Guenneau, S. and Movchan, A. B., Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94, 061903 (2009).

    Cheadle, S.P., Brown, R.J., and Lawton, D.C., Orthorhombic anisotropy: a physical seismic modelling study, Geophysics 56, 1603-1613 (1991).

    Chien, T.-Y., Huang, Y.-C., Wu, Y.-H., Li, G.-H., Weng, C.-N., and Chen, T., A simple proposition of two-dimensional configuration of seismic metamaterials‒a promising tool towards seismic cloaking, Journal of the Chinese Institute of Civil and Hydraulic Engineering (accepted to be published, 2019).

    Christensen, J. and Javier García de Abajo, F., Anisotropic Metamaterials for Full Control of Acoustic Waves, Phys. Rev. Lett. 108, 124301 (2012).

    Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 6 (2016).

    Colombi, A., Craster, R. V., Colquitt, D., Achaoui, Y., Guenneau, S., Roux, P., and Rupin, M., Elastic wavecontrol beyond band-gaps: shaping the flow of waves in plates and half-spaces with subwavelength resonantrods. Frontiers in Mechanical Engineering 3, 10 (2017).

    Colombi, A., Roux, P. and Rupin, M. Sub-wavelength energy trapping of elastic waves in a metamaterial. J. Acoust. Soc. Am. 136, EL192–EL198 (2014).

    Colombi, A., Roux, P., Guenneau, S. and Rupin, M. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. J. Acoust. Soc. Am. 137, 1783–1789 (2015).

    Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci. reports 6 (2016).

    Colquitt, D., Colombi, A., Craster, R., Roux, P. and Guenneau, S. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 99, 379–393 (2017).

    Craster, R. V. and Guenneau, S., Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Springer, Berlin (2013).

    Daley, P.F., and Hron, F., Reflection and transmission coefficients for transversely isotropic media, Bull. Seism. Soc. Am 67, 661-675 (1977).

    Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. and Linden, S., Simultaneous negative phase and group velocity of light in a metamaterial, Science 312, 892 (2006).

    Dubois, M., Farhat, M., Bossy, E., Enoch, S., Guenneau, S. and Sebbah, P., Flat lens for pulse focusing of elastic waves in thin plates, Appl. Phys. Lett. 103, 071915 (2013).

    Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. and Vincent, P. A., A Metamaterial for Directive Emission, Phys. Rev. Lett. 89, 213902 (2002).

    Ewing, W. M., Elastic Waves in Layered Media, McGraw-Hill, New York (1957).

    Fang, N., Xi, D. J., Xu, J. Y., Ambrati, M., Sprituravanich, W., Sun, C., and Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, 452 (2006).

    Farhat, M., Guenneau, S. and Enoch, S., Ultrabroadband Elastic Cloaking in Thin Plates, Phys. Rev. Lett. 103, 024301 (2009).

    Farhat, M., Guenneau, S. and Enoch, S., Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates, Phys. Rev. B 85, 020301R (2012).

    Feng, J., Kishimoto, K., Hai, Q., Hisahiro, I., and Takashi, T., Influence of Imperfect Interface on the Propagation of Love Waves in Piezoelectric Layered Structures. Key Engineering Materials 261-263, 251-256 (2004).

    Feng, J., Kishimoto, K., Inoue, H., and Tateno, T. Investigation on the effect of imperfect interface on the properties of Love wave propagation. 11th International Conference on Fracture, ICF11. 3. (2005).

    Feng, J., Kun Wang, Z., and Jun Wang, T., The Propagation Behavior of Love Waves in a Prestressed Piezoelectric Layered Structure. Key Engineering Materials 183-187, 755-760 (2000).

    Garova, E. A., Maradudin, A. A. and Mayer, A. P., Interaction of Rayleigh waves with randomly distributed oscillators on the surface, Phys. Rev. B 59, 13291 (1999).

    Gralak, B., Enoch, S., and Tayeb, G., Anomalous refractive properties of photonic crystals, J. Opt. Soc. Am. A 17, 1012 (2000).

    Gusev, V. E. and Wright, O. B., Double-negative flexural acoustic metamaterial. New Journal of Physics 16, 123053 (2014).

    Hayes, M.A. and Rivlin, R.S., Surface waves in deformed elastic materials, Arch. Ration. Mech. Anal. 8, 358–380 (1961).

    Hill, R., Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior, J. Mech. Phys. Solids 12, 199 (1964).

    Hoger, A., On the residual stress possible in an elastic body with material symmetry, Arch. Ration. Mech. Anal. 88, 271–290 (1985).

    Hoger, A., On the determination of residual stress in an elastic body, J. Elasticity 16, 303–324 (1986).

    John, S., Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).

    Kosevich, Yu. A. and Syrkin, E. S., Long wavelength surface oscillations of a crystal with an adsorbed monolayer, Phys. Lett. A 135, 298 (1989).

    Krӧdel, S., Thomé, N., Daraio, C., Wide band-gap seismic metastructure, Extreme Mechanics Letters 4, 111-117, 2015.

    Liu, H., Wang, Z.K., and Wang, T.J., Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure, Int. J. Solid Struct. 38, pp. 37-51 (2001).

    Liu, Z., Zhang, X., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., Locally Resonant Sonic Materials, Science 289, 1734 (2000).

    Love, A. E. H., Some Problems of Geodynamics. Cambridge University Press (1911).

    Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, Inc. New York (1927).

    Luo, C., Johnson, S. G., Joannopoulos, J. D. and Pendry, J. B., All-angle negative refraction without negative effective index, Phys. Rev. B 65, 201104 (2002).

    Man, C. S. and Lu, W.Y., Towards an acoustoelastic theory for measurement of residual stress, J. Elasticity 17 (2), 159–182 (1987).

    Marigo, J.-J. and Maurel, A., Second Order Homogenization of Subwavelength Stratified Media Including Finite Size Effect, SIAM J. Appl. Math., 77(2), 721–743 (2017).

    Martinez-Sala, R., Sancho, J., Sanchez, J. V., Gomez, V., Llinares, J. and Meseguer, F., Sound attenuation by sculpture, Nature (London) 378, 241 (1995).

    Maurel, A., Marigo, J.-J., Pham K. and Guenneau, S., Conversion of Love waves in a forest of trees. Physical Review B 98, 134311 (2018).

    Maznev, A. and Gusev, V. Waveguiding by a locally resonant metasurface. Phys. Rev. B 92, 115422 (2015).

    Mercier, J.-F., Cordero, M. L., Félix, S., Ourir, A. and Maurel, A., Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects, Proc. R. Soc. A 471: 20150472 (2015).

    Meseguer, F., Holgado, M., Caballero, D., Benaches, N., Sanchez-Dehesa, J., Lopez, C. and Llinares, J., Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal, Phys. Rev. B 59, 12169 (1999).

    Milton, G.W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006).

    Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New Journal of Physics, Vol. 18, No. 8, pp. 083041 (2016).

    Norris, A. N. and Shuvalov, A. L., Elastic cloaking theory, Wave Motion 48, 525 (2011).

    Notomi, M., Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62, 10696 (2000).

    Palermo, A. amd Marzani, A., Control of Love waves by resonant metasurfaces, Sci. Reports 8 (2018).

    Palermo, A., Krödel, S., Marzani, A. and Daraio, C. Engineered metabarrier as shield from seismic surface waves. Sci. Reports 6 (2016).

    Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

    Pendry, J. B., Martín-Moreno, L., Garcia-Vidal, F. J., Mimicking Surface Plasmons with Structured Surfaces, Science 305, Issue 5685, pp. 847-848 (2004)

    Pendry, J B., Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 (2000).

    Rayleigh, L., On Waves Propagated along the Plane Surface of an Elastic Solid, Proceedings of the London Mathematical Society, Volume s1-17, Issue 1, pp. 4-11 (1885).

    Rupin, M., Lemoult, F., Lerosey, G. and Roux, P. Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Phys. Review Letters 112, 234301 (2014).

    Semblat, J.-F. and Pecker, A., Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction Works, IUSS Press, Pavia (2009).

    Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. and Smith, D. R., Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314, 977 (2006).

    Seth, S. and Michael, W., Introduction to Seismology, Earthquakes, and Earth Structure, Oxford: Blackwell Publishing Ltd (2003).

    Shams, M., Effect of initial stress on Love wave propagation at the boundary between a layer and a half space, Wave Motion 65, pp. 92-104 (2016).

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184 (2000).

    Stenger, N., Wilhelm, M. and Wegener, M., Experiments on Elastic Cloaking in Thin Plates, Phys. Rev. Lett. 108, 014301 (2012).

    Sukhovich, A., Merheb, B., Muralidharan, K., Vasseur, J. O., Pennec, Y., Deymier, P. A. and Page, J. H., Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals, Phys. Rev. Lett. 102, 154301 (2009).

    Thomsen, L., Weak elastic anisotropy, Geophysics 51, 1954–1966, (1986)

    Tsvankin, I., Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Elsevier Science, Cambridge. (2001)

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Soviet Physics Uspekhi 10, 509-514 (1968).

    Vishwakarma SK, Kaur R, and Panigrahi TR. Love wave frequency in an orthotropic crust over a double-layered anisotropic mantle, Soil Dyn Earthquake Eng. 110, 86-92 (2018).

    Wang, Z. K. and Sheng, F. L., Cylindrical buckling of piezoelectric laminated plate, Acta Mechanica Solida Sinica 18, 101-108 (1997).

    Watson, L. and K. van Wijk, Resonant ultrasound spectroscopy of horizontal transversely isotropic samples, J. Geophys. Res. Solid Earth 120, 4887–4897 (2015).

    Winterstein, D.F., and Paulsson, B.N.P., Velocity anisotropy in shale determined from crosshole seismic and vertical seismic profile data, Geophysics 55, 470-479 (1990).

    Wu, Y.-H., Wang, S.-J., Chang, K.-C., Chen, T.-Y., Seismic metamaterials made of an array of multiple cell units with broad band gap, Journal of the Chinese Institute of Civil and Hydraulic Engineering 31(1), pp. 103-118 (2019).

    Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).

    Zengerle, R., Light Propagation in Singly and Doubly Periodic Planar Waveguides, Journal of Modern Optics 34, Issue 12 (1987).

    下載圖示 校內:2024-07-26公開
    校外:2024-07-26公開
    QR CODE