| 研究生: |
姜定良 Chiang, Ding-Liang |
|---|---|
| 論文名稱: |
摻雜鍺介孔二氧化矽結構與發光特性之研究 Microstructure and Photoluminescence of Ge-doped Mesoporous Silica |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 摻雜鍺 、介孔二氧化矽 、光致發光 |
| 外文關鍵詞: | Ge-doped, mesoporous silica, photoluminescence |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介孔二氧化矽的光致發光應用引起相當廣泛的注意,其發光機制為介孔二氧化矽有高比表面積可提供大量的缺陷中心,能藉由表面改質,就可以改變發光強度與波長。本研究以溶膠-凝膠法製作介孔二氧化矽薄膜,以TEOS為反應前驅物,利用界面活性劑CTAB作為合成介孔結構之模板,以旋轉塗佈的方式將溶液塗佈於矽基板上形成前驅物薄膜,經煆燒400 oC持溫時間12 h,利用ICP-CVD進行H2電漿表面處理,藉以改變表面缺陷與化學鍵結,並以同步輻射光激發試片,進一步解析PL特性。以四氯化鍺加入合成介孔二氧化矽溶液中,同樣以旋轉塗佈形成薄膜前驅物,煆燒400 oC持溫時間12 h後,並以PECVD進行H2電漿表面處理。為進一步分析摻雜鍺二氧化矽的影響,將摻雜不同鍺莫耳比的介孔二氧化矽粉末進行不同氫氣氛比例還原熱處理600 oC持溫時間5h後,以SEM、TEM、TG-DTA、氮氣等溫吸附/脫附分析、FTIR、XPS與 PL進行分析與探討。
實驗結果顯示,由TEM觀察介孔二氧化矽薄膜經400 oC煆燒後的介孔孔徑尺寸約為1~2 nm,為一連通孔徑的介孔材料,由氮氣等溫吸附/脫附分析得知其擁有高比面積為1144 m2/g,平均孔徑2 nm。PL結果顯示,其具有三個發射光波峰分別為322、387及410 nm,起因分別為非橋氧電洞中心、氫氧基中心、二折疊配位矽中心。在薄膜經過ICP-CVD氫電漿處理後,其322nm (3.85eV)的UV發射光波峰消失,為非橋氧鍵結的氧原子與電漿中解離的氫自由基結合所致。
TEM結果顯示當摻雜Ge/Si莫耳比例為0.01時,薄膜具有連通之孔洞結構,其孔徑尺寸大小一致約為1~2 nm,由氮氣等溫吸附/脫附分析得知其仍具有高比表面積為907 m2/g,平均孔徑為3 nm。摻雜Ge進入薄膜將取代部分的Si形成Ge-O鍵結,PECVD H2電漿表面處理增加薄膜的氧空缺濃度,進而提升PL發光強度。然而,當摻雜Ge/Si莫耳比例> 0.01時,並不會提升PL發光強度,因Ge-O鍵結逐漸聚集並析出造成相分離所導致。
以摻雜Ge/Si莫耳比例為0.2之介孔二氧化矽粉末進行不同還原氣氛比例熱處理,隨著氫氣比例的增加至33.3 %,粉末內二氧化鍺完全還原成金屬鍺。在氫氣還原比例為5 %時,有最高的672 nm (1.84 eV)紅光發光強度,隨著氫氣還原比例的增加,其紅光發光強度逐漸降低。以摻雜不同Ge/Si莫耳比例介孔二氧化矽粉末,氫氣比例固定為5 %進行還原熱處理,摻雜鍺比例為0.05時,其TEM擇區繞射結果顯示立方結構金屬鍺與六方結構的二氧化鍺兩相共存,二氧化鍺的奈米晶粒尺寸為5~8 nm。在摻雜鍺莫耳比例為0.01時,波長位於672 nm (1.84 eV)有最高的紅光發光強度,同時發現波長位於524 nm (2.37 eV)有最高的綠光發光強度,其綠光缺陷能階為二氧化矽本質缺陷Si-H造成。
Visible and ultraviolet luminescence of mesoporous silica for optoelectronic applications has attracted much attention recently. The mechanism of photoluminescence of mesoporous silica arises from a lot of surface defects due to its high specific surface area. If the amount or kinds of defects can be controlled, the intensity and wavelength of PL will be adjusted. Nanostructured mesoporous silica and Ge-doped mesoporous silica thin films have been deposited on silicon substrate by the spin-coating technique using CTAB as a template and GeCl4 as Ge precursor and then calcined at 400 oC for 12 h. The PL behavior of mesoporous silica thin film is related to the defects, ICP-CVD hydrogen plasma was used to modify the chemical bonding on the surface of thin film. Ge-doped mesoporous silica thin film was passivated by PECVD hydrogen plasma. To further study, various molar ratio of Ge/Si were doped in mesoporous silica powder and reduced at 600 oC 5h in different ratio of H2/N2. TG-DTA, XPS, SEM, HRTEM, N2 adsorption-desorption isotherm, FTIR and synchrotron high flux beamline were used to characterize the microstructure and photoluminescence properties of the resulting film.
After calcined at 400 oC for 12 h, from TEM results, the thin film exhibited a very smooth surface and interconnected pores, with a pore size of about 1-2 nm. From N2 adsorption-desorption isotherm results, the specific surface area is up to 1144 m2/g and the average pore size is 2 nm. The synchrotron photoluminescence spectra show that the samples after calcination have three obvious luminescence peaks around 322, 387 and 410 nm arising from nonbridging oxygen hole centers (NBOHCs), twofold-coordinated silicon centers, and Si-OH surface complexes. The UV emission (322 nm) due to NBOHCs is inhibited by H2 plasma treatment, indicating that the nonbridging oxygen was saturated by the hydrogen atoms.
The TEM results suggest that the Ge-doped mesoporous silica thin film with Ge/Si molar ratio of 0.01 was observed a very smooth surface and interconnected pores, with a pore size of about 1-2 nm. From N2 adsorption-desorption isotherm results, the sample with the specific area up to 907 m2/g and the average pore size up to 3 nm could be obtained. In this study, Ge-doped mesoporous silica thin film in which some Si atoms were replaced by Ge atoms according to the X-ray photoelectron spectroscopy analyses. The PL intensity of mesoporous silica passivated by PECVD hydrogen plasma could be increased by germanium-induced oxygen-related defects, but for the samples with Ge/Si molar ratios larger than 0.01, the PL intensity decreased due to the phase separation of germanium oxide.
With increasing the ratio of H2 atmosphere up to 33.3%, the Ge-doped mesoporous silica powder with Ge/Si molar ratio of 0.2 reduced at 600 oC for 5 h, hexagonal GeO2 was reduced into cubic Ge phase. When reduced in 5 % H2, Ge-doped mesoporous silica was characterized by the strongest PL intensity with 672 nm. To further study, 5 % H2 atmosphere was chosen to reduce different molar ratio of Ge-doped mesoporous silica. The Ge-doped mesoporous silica with Ge/Si molar ratio of 0.01 was characterized by the strongest PL intensity peak centered at 672 nm and 524 nm.
參考文獻
1.K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determineation of surface area and porosity”, Pure Appl. Chem., 57 (1985) 603-619.
2.U. Ciesla and F. Scüth, “Ordered mesoporous materials”, Micropor. Mesopor. Mat., 27 (1999) 131-149.
3.C. T. Kresge, M. E. Leonowica, W. J. Roth, J. C. Vartuli, and J. S. Beck, ” Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359 (1992) 710.
4.F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals”, J. Appl. Phys., 87 (2000) 1295.
5.L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., 57 (1990) 1046.
6.S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, and Y. Ohki, “Various types of nonbridging oxygen hole center in high-purity silica glass”, J. Appl. Phys., 68 (1990) 1212.
7.B. Yao, H. Shi, X. Zhang, and L. Zhang, “Ultraviolet photoluminescence from nonbridging oxygen hole centers in porous silica”, Appl. Phys. Lett., 78 (2001) 174.
8.M. E. Gimon-Kinsel, K. Groothuis, and K. J. Balkus, “Photoluminescent properties of MCM-41 molecular sieves”, Micropor. and Mesopor. Mater., 1998, 20, 67.
9.M. S. EI-Shall, S. Li, T. Turkki, D. Gravier, U. C. Pernisz, M. I. Baraton, “Synthesis and photoluminescence of weblike agglomeration of silica nanoparticles”, J. Phys. Chem., 99 (1995) 17805.
10.H. J. Chang, Y. F. Chen, H. P. Lin, C. Y. Mou, “Strong visible photoluminescence from SiO2 nanotubes at room temperature”, Appl. Phys. Lett., 78 (2001) 3791.
11.Y. D. Glinka, A. S. Zyubin, A. M. Mebel, S. H. Lin, L. P. Hwang, Y. T. Chen, “Photoluminescence from mesoporous silica akin to that from nanoscale silicon: the nature of light-emitters”, Chem. Phys. Lett., 358 (2002) 180.
12.魏大欽、楊忠諺、李益維、巫盛堯, ”多孔性二氧化矽薄膜之電漿處理研究”,奈米通訊,第10卷,第1期,2005,p.14。
13.L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and Priolo,” Optical gain in silicon nanocrystals”, Nature (London), 408 (2000) 440.
14.L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. B. Min,” Blue luminescence from Si+ implanted SiO2 films thermally grown on crystalline silicon”, Appl. Phys. Lett., 68 (1996) 850.
15.P. Phtopoulos, A. G. Nassiopoulou, D. N. Kouvatsos, and A. Travlos, ”Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices”, Appl. Phys. Lett., 76 (2000) 3588.
16.X. X. Wang, J. G. Zhang, L. Ding, B.W. Cheng, W. K. Ge, J. Z. Yu, Q.M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B., 72 (2005) 195313.
17.Y. Maeda, ”Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix”, Phys. Rev. B., 51 (1995) 1658.
18.D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminesce from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2”, Appl. Phys. Lett., 62(22), 2842 (1993).
19.M. Nogami and Y. Abe, “Sol-gel method for synthesizing visible photoluminesent nanosized Ge-crystal-doped silica glasses.”, Appl. Phys. Lett., 65(20), 14, 2545, 2842 (1993).
20.鄭雅如,“中孔徑分子篩MCM41的合成與形態學之研究”,國立台灣大學化學研究所碩士論文,民國86,p.12。
21.高嘉珮,“中孔洞矽氧分子篩合成條件之控制及動力學研究”,國立台灣大學化學研究所碩士論文,民國89,pp.5-6。
22.B. Lindmanm and H. Wennerstrom, Micelles: Amphiphile Aggregation in Aqueous solution, Springer-Verlag, Heidelberg (1980), p.6.
23.Y. C. Lin and S. H. Chen, “Ion correlations and counter-ion condensation in ionic micellar solutions”, Condens. Matter, 8 (1996) 12169.
24.H. Dislich, Thin Flim from the Sol-Gel Process, Sol-Gel Technology for Thin Films, Fibers, Performs, Electrons and Specialty Shapes, Edited by Lisa C. Klein, Noyes Pulications, (1988), pp.50-56
25.L. L. Hench and J. K. West, “The Sol-Gel Process”, Chem. Rev., 90 (1990) 33.
26.J. Y. Ying, C. P. Mehnert, and M.S.Wong, “Synthesis and applications of supramolecular-templated mesoporous materials ”, Angew Chem. Int. Ed., 38 (1999) 56.
27.C. J. Brinker and G. W. Scherer, “Sol-gel Science”, Academic Press, San Diego, (1990), pp.22-45.
28.C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures Made Easy”, Adv. Mater., 11 (1999) 579.
29.S. J. Gregg and K. S. W. Sing, “Adsorption, Surface Area and Porosity”, 2nd Ed., Academic Press, New York, (1982), pp.1-110.
30.S. A. Davis, S. L. Burkett, N. H. Mendelson, and S. Mann, “Bacterial templating of odered macrostructures in silica and silica-surfactant mesophases”, Nature, 385 (1997) 420.
31.G. Ertl, H. Knozinger, and J. Weitkamp, “Handbook of Hetergeneous Catalysis”, VCHD-69457, Deinheim, 3 (1997) 1508.
32.E. F. Vansant, P. V. D. Voort, and K. C. Vrancken, “Studies in Surface Science and Catalysis”, Elsevier, 93 (1995) Chapter 3.
33.K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation”, J. A. Phys., 68 (1990) 3584.
34.L. Rebohle, T. Gebel, J. von Borany, H. Frob, D. Borchert, and W. Skorupa, “Strong visible electroluminescence from Ge- and Sn-implanted silicon dioxide layers”, Mater. Sci. Eng. C, 19 (2002) 373.
35.Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices”, Appl. Phys. Lett., 59 (1991) 3168.
36.A. Anedda, C. M. Carbonaro, F. Clemente, R. Corpino, S. Grandi, P. Mustrarelli, and A. Magistris, “OH-dependence of ultraviolet emission in porous silica”, J. Non-Cryst. Solids, 322 (2003) 68.
37.Y. Zhang, F. Phillipp, G. W. Meng, L. D. Zhang, and C. H. Ye, “Photo-luminescence of mesoporous silica molecular sieves”, J. Appl. Phys., 88 (2000) 2169.
38.M. A. S. Kalceff and M. R. Phillips,”Cathodoluminescence microcharacterization of the defect structure of quartz”, Phys. Rev. B, 52 (1995) 3122.
39.B. L. Zhang and K. Raghavachari,“Photoabsorption and photoluminescence of divalent defects in silicate and germanosilicate glasses: First-principles calculations”, Phys. Rev. B, 55 (1997) 15993.
40.L. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2 : twofold coordinated silicon”, Solid State Commun., 50 (1984) 1069.
41.Y. D. Glinka, S. H. Lin, L. P. Huang, and Y. T. Chen, “Photoluminescence from mesoporous silica: similarity of properties to porous silicon”, Appl. Phys. Lett., 77 (2000) 3968.
42.D. L. Nicácio, E. A. Gouveia, N. M. Borges, and A. S. Gouveia-Neto, “Third-harmonic generation in GeO2-doped silica single-mode optical fibers”, Appl. Phys. Lett., 62 (1993) 2179.
43.M. Takahashi, T. Fujiwara, T. Kawachi, and A. J. Ikushima, ”Thermal equilibrium of Ge-related defects in a GeO2-SiO2 glass”, Appl. Phys. Lett., 72 (1998) 1287.
44.P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica Glass”, Phys. Rev. Lett., 82 (1999) 2199.
45.L. Rebohle, J. von Borany, H. Fröb, and W. Skorupa, “Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements”, Appl. Phys. B: Lasers Opt., 71 (2000) 131.
46.S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Temperature and excitation energy dependence of decay processes of luminescence in Ge-doped silica”, Phys. Rev. B, 68 (2003) 165201.
47.H. -J. Fitting, T. Barfels, A. N. Trukhin, and B. Schmidt, ”Cathodo-luminescence of crystalline and amorphous SiO2 and GeO2”, J. Non-Cryst. Solids, 279 (2001) 51.
48.T. Takagahara, and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, 46 (1992) 15578.
49.L. E. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites” J. Chem. Phys., 79 (1983) 5566.
50.K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atawter, M. L. Brongersma, and A. Polman, “The role of quantum-confined excitons vs. defects in the visible luminescence of SiO2 films containing Ge nanocrystals”, Appl. Phys. Lett., 68 (1996) 2511.
51.J. Y. Zhang, X. M. Bao, Y. H. Ye, and X. L. Tan, “Blue and red photoluminescence from Ge+ implanted SiO2 films and its multiple mechanism”, Appl. Phys. Lett., 73 (1998) 1790.
52.W. K. Choi, H. H. Thio, S. P. Ng, and V. Ng, “Synthesizing germanium nanocrystals in amorphous silicon oxide by Rapid Thermal Annealing”, Philosophical Magazine B, 80 (2000) 729.
53.A. S. Zyubin, A. M. Mebel, and S. H. Lin, “Photoluminescence of oxygen-containing surface defects in germanium oxides: A theoretical study”, J. Chem. Phys., 123 (2005) 044701.
54.S. Y. Ma, G. G. Qin, and Y. Y. Wang, “A study on photoluminescence from Si-rich silicon oxide films and Ge-containing silicon oxide films”, Mater. Lett., 49 (2001) 63.
55.C. N. Ye, X. M. Wu, N. Y. Tang, L. J. Zhuge, W. G. Yao, J. Chen, Y. M. Dong, and Y. H. Yu, “Origin of photoluminescence peaks in Ge-SiO2 thin films”, Sci. and Technol. Adv. Mater., 3 (2002) 257.
56.G. Kartopu, S. C. Bayliss, V. A. Karavanskii, R. J. Curry, R. Turan, and A. V. Sapelkin, “On the origin of the 2.2-2.3 eV photoluminescence from chemically etched germanium”, J. Luminescence, 101 (2003) 275.
57.T. Gao, X. M. Bao, F. Yan, and S. Tong, “Photoluminescence from Ge+-implanted SiO2 films on Si substrate and its mechanism”, Phys. Lett. A, 232 (1997) 321.
58.J. K. Shen, X. L.Wu, R. K. Yuan, N. Tang, J. P. Zou, Y. F. Mei, C. Tan, X. M. Bao, and G. G. Siu, “Enhanced ultraviolet photoluminescence from SiO2/Ge:SiO2/SiO2 sandwiched structure”, Appl. Phys. Lett., 77 (2000) 3134.
59.L. Rebohle, J. V. Borany, R. A. Yankov, W. Skorupa, I. E. Tyschenko, H. Fröb, and K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers”, Appl. Phys. Lett., 71 (1997) 2809.
60.V. Ng, S. P. Ng, H. H. Thio, W. K. Choi, A. T. S. Wee, and Y. X. Jie, “Luminescence and X-ray diffraction studies of Ge nanocrystals in amorphous silicon oxide.”, Mater. Sci. E. A, 286 (2000) 161.
61.M. I. Ortiz, A. Rodríguez, J. Sangrador, T. Rodríguez, M. Avella, J. Jiménez, and C. Ballesteros, “Luminescent nanostructures based on Ge nanoparticles embedded in an oxide matrix”, Nanotechnology, 16 (2005) S197.
62.S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, ”Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases ”, Nature, 385 (1997) 420.
63.D. Y. Zhao, J. L. Feng, Q. H. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, ”Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores”, Science, 279 (1998) 548.
64.X. S. Zhao, C. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, “Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA”, J. Phys. Chem. B, 101 (1997) 6525.
65.F. Kleitz, W. Schmidt, F. Schüth, “Calcination behavior of different surfactant-templated mesostructured silica materials”, Micropor. and Mesopor. Mater., 65 (2003) 1.
66.L. L. Hench and J. K. West, “The Sol-Gel Process”, Chem. Rev., 90 (1990) 33.
67.M. Thommes, In: G. Q. Lu, X.S. Zhao (eds), “Nanoporous materials: sciences and engineering”, Imperial College Press, London, (2004) chap. 11.
68.Y. D. Glinka, V. Y. Degoda, S. N. Naumenko, “Multiphoton mechanism of generation of elementary excitations in disperse SiO2”, J. Non-Cryst. Solids, 152 (1993) 219.
69.H. Nishikawa, T. Shiroyama, R. Tohmon, Y. Ohki, Y. Sakurai, K. Nagasawa, Y. Hama, “Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silica”, Phys. Rev. B, 41 (1990) 7828.
70.Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles”, Appl. Phys. Lett., 75 (1999) 778.
71.B. Yao, H. Shi, X. Zhang, and L. Zhang, “Ultraviolet photoluminescence from nonbridging oxygen hole centers in porous silica”, Appl. Phys. Lett., 78 (2001) 174.
72.S. Dzwigaj, J. M. Krafft, M. Che, S. Lim, G. L. J. Haller, “Photo-luminescence study of the introduction of V in Si-MCM-41: role of surface defects and their associated SiO- and SiOH groups”, J. Phys. Chem. B, 107 (2003) 3856.
73.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett., 73 (1998) 3076.
74.顏榮賢,”感應耦合電漿化學氣相沉積法成長奈米碳管之研究”,國立成功大學材料科學及工程學系博士論文,民國94,pp.6-8。
75.蔡淑儀,“利用感應耦合電漿化學氣相法在極低溫下沉積SiO2薄膜以製備MIS結構”,國立成功大學微機電系統工程研究所碩士論文,民國95,pp.13-15。
76.G. S. Armatas, and M. G. Kanatzidis, “Hexagonal Mesoporous Germanium”, Science, 313 (2006) 817.
77.Carlo Maria Carbonaro, Vincenzo Fiorentini, and Fabio Bernardini, “Stability of Ge-related point defects and complexes in Ge-doped SiO2”, Phys. Rev. B 66 (2002) 233201.
78. J. R. Szczech, M. A. Lukowski, and S. Jin, “Synthesis of mesoporous Si1−xGexO2 (0.10 ≤ x ≤ 0.31) using a nonionic block copolymer template”, J. Mater. Chem. 20 (2010) 8389.
79.A. Molle, M. N. K. Bhuiyan, G. Tallarida, and M. Fanciulli, “In situ chemical and structural investigations of the oxidation of Ge (001) substrates by atomic oxygen”, Appl. Phys. Lett., 89 (2006) 083504.
80.H. Hosono, H. Kawazoe, and K. Muta, ”Preferred concentration enhancement of photobleachable defects responsible for 5 eV optical absorption band in SiO2:GeO2 glass preformed by heating in a H2 atmosphere”, Appl. Phys. Lett. 63 (1993) 479.
81.S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, ”Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices”, Phys. Rev. B, 58 (1998) 7921.
82.Y. M. Yang, L. W. Yang, M. Q. Cai, and P. K. Chu, “Photoluminescence and self-interference in germanium-doped silica films”, J. Appl. Phys., 101 (2007) 093503.
83.D. L. Chiang, M. H. Hon, L. G. Teoh, and J. Shieh, “Microstructure and photoluminescence of Ge-doped mesoporous silica”, J. Sol-Gel Sci. Technol., 10 (2013) 1007.