簡易檢索 / 詳目顯示

研究生: 陳煌騰
Chen, Huang-Teng
論文名稱: 軟微影壓印反置型有機太陽能電池之特性研究
Fabrication and Characterization of Imprinted Inverted Type Organic Solar Cells Using Soft Lithography
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機太陽能電池軟微影反置型
外文關鍵詞: Organic Solar Cell, Soft Lithography, Inverted Type
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在對反置型有機太陽能電池中的電子傳輸層及主動層做微奈米結構,希望藉由微奈米結構增加電子傳輸層或主動層的接觸面積來提升填充因子(F.F),並藉由光進入微奈米結構使光反射下降,進而提升短路電流密度(Jsc),使光電轉換效率(PCE)提升。壓印方法主要是利用軟微影技術,依壓印母模結構不同可分為兩部份(1)利用PDMS翻DVD+R光柵結構;(2)利用PDMS翻PUA柱狀結構,比較探討壓印對電子傳輸層或主動層之反射以及效率的影響,光柵結構電子傳輸層效率由2.39%提升至2.65%,柱狀結構電子傳輸層光電轉換效率可提升至3%,主要提升為填充因子從0.5提升至0.573,結果顯示電子傳輸層上製作柱狀結構會比光柵結構好,於主動層上之光柵結構主動層效率也有進一步提升,主要為填充因子從0.5提升至0.59,其次為短路電流密度從9.02提升至9.73 (mA/cm2),效率從2.4%提升至3.0%,而主動層上製作柱狀結構推論因柱狀深度過深,密度過大,因此反而與溶液塗佈之PEDOT接觸不佳;因而有孔隙,使光電轉換效率下降,比較光柵結構於電子傳輸層及主動層,可以得到光柵結構主動層效率優於光柵結構電子傳輸層效率,結果顯示在於填充因子的提升,推論原因為主動層材料之電洞載子移動率低於電子載子移動率,因此在主動層與電洞傳輸層間製作微奈米結構是較有助於整體元件效率的提升。

    The objective of this study is to fabricate nanostructure on electron transport layer and active layer of inverted organic solar cells. By using the technique to add contact area and light absorption, we are able to enhance Fill factor and the power efficiency. There are two parts to fabricate molds in imprinting process:(1) Using PDMS to fabricate DVD+R grating structure. (2) Using PDMS to fabricate column structure. In grating structure on electron transport layer, the value of power efficiency rises from 2.39 to 2.65%. In column structure on electron transport layer, the value of the power efficiency can enhance to 3%, and the value of Fill factor increases from 0.5 to 0.57. This result shows that fabricating the column structure is better than fabricating the grating structure in electron transport layer. Another way to imprint grating structure on active layer can enhance the power efficiency. The value of Fill factor increases from 0.5 to 0.59. The current density rises from 9.02 mA/cm2 to 9.73 mA/cm2. The value of the power efficiency rises from 2.4 to 3.0%. But there are some problems of fabricating the column structure on active layer need to be solved. So the power efficiency is unexpected. Compared with the grating structure on electron transport layer, the power efficiency of grating structure on active layer can be better because the value of Fill factor has increased. We infer that the mobility of electron hole is less than the mobility of electron, and then fabricating nanostructure on active layer can promote Power Conversion Efficiency(PCE).

    目錄 考試合格證明 中文摘要 英文摘要 致謝 目錄 Ⅰ 表目錄 Ⅳ 圖目錄 Ⅴ 第一章 序論 1 1.1前言 1 1.2太陽能電池歷史簡介 2 1.3高分子太陽能電池發展 5 1.4研究動機 8 第二章 實驗原理 9 2.1太陽能電池基本原理 9 2.1.1標準測試規範及元件參數介紹 9 2.1.2高分子太陽能電池機制與結構介紹 12 2.2軟微影技術簡介 14 第三章 實驗方法及步驟 19 3.1實驗材料 19 3.2實驗流程 20 3.2.1反向太陽能電池元件製作 21 3.2.2 DVD光柵結構翻模與PUA柱狀結構翻模製作 27 3.2.3軟微影壓印電子傳輸層 29 3.2.4軟微影壓印主動層 30 3.2.5光電轉換效率、全反射 31 第四章 實驗結果與討論 33 4.1前言 33 4.2反置型太陽能電池與正向太陽能電池比較 33 4.2.1反置型太陽能電池與正向太陽能電池光電轉換效 率比較 33 4.2.2反置型太陽能電池與正向太陽能電池壽命測試 33 4.3 PDMS翻模與壓印結果 34 4.3.1翻製DVD光柵結構母模 34 4.3.2翻製PUA 柱狀結構母模 34 4.4壓印電子傳輸層電池元件分析 34 4.4.1壓印電子傳輸層之表面形貌 35 4.4.2壓印電子傳輸層電池元件之光電轉換效率 35 4.4.3壓印電子傳輸層電池元件之全反射量測 36 4.4.4壓印電子傳輸層電池元件之外部量子效率量測 36 4.4.5壓印電子傳輸層電池元件總結果討論 37 4.5壓印主動層電池元件分析 38 4.5.1壓印主動層之表面形貌 39 4.5.2壓印主動層之光電轉換效效率 39 4.5.3壓印主動層電池元件之全反射量測 40 4.5.4壓印主動層電池元件之外部量子效率量測 41 4.5.5壓印主動層電池元件總結果討論 41 第五章 總結與建議 44 參考文獻 46 附錄(壓印氧化鋅薄膜及主動層薄膜結果與討論) 51

    [1]D. M. Chapin, "A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power", J.Appl.Phys.,25,676 (1954)
    [2]M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar Cell Efficiency Tables(Version 33)", Prog.Photovolt: Res.Appl., 7,85(2009)
    [3]D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell", Appl.Phys.Lett., 28,671(1976)
    [4]K. riprapa and P. Sichanugrist "High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate" Photovoltaic Energy Conversion 2003. Proceedings of 3rd World Conference on Volume 3 , 2799 (2003)
    [5]M. A. Contreras , B. Egaas , K. Ramanathan , J.Hiltner , A. Swartzlander , F. Hason and R. Noufi "Properties of 19.2% efficiency ZnO/CdS/Ce2 thin-film solar cells" Prog. Photovolt.:Res. Appl. 7 , 311 (1999)
    [6]B. O'Regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2", Nature, 353, 737-740 (1991)
    [7]D. Kearns, M. Calvin, "Photovoltaic effect and photoconductivity in laminated organic systems", J. Chem. Phys., 29,950-951 (1958)
    [8]C.W. Tang, "Two-layer organic photovoltaic cell", Appl. Phy. Lett., 48, 183-185 (1986)
    [9]P. Peumans, S.R. Forrest, "Very-high-efficiency double-heterostructure opper phthalocyanine/C60 photovoltaic cells”, Appl, Phys. Lett., 79,126-128 (2001)
    [10]J. Tsukamoto, H. Ohigashi, K. Matsumura, A. Takahashi, "A Schottky-barrier type solar-cell using polyacetylene", Jpn. J. Appl. Phys., 20,L127-L129 (1981)
    [11]H.W. Kroto, J.R. Heath, S.C. O'Brien, R.E. Curl, R.E. Smalley, "C60-buckminsterfulleren", Nature, 318,162-163 (1985)
    [12]G. Yu, K. Pakbaz, A.J. Heeger, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity", Appl. Phys. Lett., 64, 3422-3424 (1994)
    [13]G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, "Polymer hotovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270, 1789-1791 (1995)
    [14]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Adv. Funct. Mater., 15, 1617-1622 (2005)
    [15]R. Gaudiana, C. J. Brabec, "Organic materials:fantastic plastic", Nat. Photonics2 (2008) 287–289
    [16]G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, "Efficient inverted Polymer Solar Cells ", Appl, Phys. Lett., 88,253503-1 (2006)
    [17]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, "Inverted bulk-heteroiunction organic photovoltaic device using a solution-derived ZnO underlayer ", Appl, Phys. Lett., 89,143517 (2006)
    [18]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec,"Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact" Appl, Phys. Lett., 89,233517 (2006)
    [19]C. H. Hsieh, Y.J. Cheng, P.J. Li, C.H. Chen, M. Dubosc, R.M. Liang, C.S. Hsu, "Highly efficient and stable inverted polymer solar cells integrated with across-linked fullerene material as an interlayer", J. Am. Chem. Soc. 132(2010) 4887–4893.
    [20]Y. Liang, Z. Xu, J. Xia, S. T. Yue Wu, Gang Li, Claire Ray, Luping Yu, "For the Bright Future-Bulk Heteroiunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%", Adv. Funct. Mater., 22, E135-138 (2010)
    [21]H. -Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li., "Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency", Nature Photonics 3, 649-653 (2009)
    [22]K. S. Nalwa, J.-M. Park, K.-M. Ho, S. Chaudary, "On realizing higher efficiency polymer solar cells using a textured substrate platform", Adv. Mater. 23, pp. 112-116, 2011.
    [23]M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, "Diffraction gratings and buried nano-electrodes—architectures for organic solar cells",Thin Solid Films 451-52, 619 (2004)
    [24]G. Zhao, Y. He, Y. Li,"6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and lndene-C60 Bisadduct by Device Optimization", Adv. Funct. Mater., 22, 4355-4358 (2010)
    [25]K. Takanezawa, K. Hirota, Q.-S. Wei, K. Hashimoto, "Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices", J. Phys. Chem., C111,7218-7223 (2007)
    [26]Y. Yang, K. Lee, K. Mielczarek, W. Hu, A. Zakhidov, "Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaic", Nanotechnology., 22, 485301(2011)
    [27]C. J. Brabec,V. Dyakonov, J. Parisi, N.S. Sariciftci,"Organic Photovoltaics: concepts and realization", Springer, New York 2003
    [28]T. Kietzke, "Recent Advances in Organic Solar Cells", Advances in OptoElectronics, Volume 2007, 40285, 15 pages,2007
    [29]S. R. Forrest, "The Limits to Organic Solars cells", Mrs. Bull. 30 , 28(2005)
    [30]A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E Harth, A. Gugel and K. Mullen, "Exciton diffusion and dissociation in coniugated polymer/fullerene blends and heterstructures" Phys. Rev. B59,15346(1999)
    [31]Y. Xia, X.-M. Z. George, M. Whitesides , "Pattern transfer: Self-assembled monolayers as ultrathin resists",Microelectronic. Eng. 32, pp. 255-268 (1996)
    [32]Y. Xia, and G. M. Whitesides, "Soft Lithography", Angew. Chem. Int. Ed. 37, pp. 550-575 (1998).
    [33]H. Sirringhaus , P.J. Brown,R.H. Friend, M. M. Nielsen , K. Bechgaard , B. M. W. Langeveld-Voss , A. J. H. Spiering , R. A. J. Janssen , E. W. Meijer , P. Herwig and D. M. de Leeuw ,"Two-dimensional charge transport in self-organized,high-mobility conjugated polymers",Nature 401 , 685 (1999)
    [34]J. C. Hummelen,B.W.Knight, F. Lepeq, F. Wudl,J. Yao and C. L.Wilkins "Preparation and Characterization of Fulleroid and Methanofullerene Derivatives", J. Org. Chem. 60 , 532 (1995)
    [35]E. J. Meijer , D. M. de Leeuw , S. Setayesh , E. V. Veenendaal , B. H. Huisman , P. W. M. Blom , J. C. Hummelen , U. Scherf and T. M. Klapwijk "Solution-processed ambipolar organic field-effect transistors and inverters",Nat. Mater. 2 , 678 (2003)
    [36]V. G. Li, J. Shrotriya, Y. Huang, T. Yao, K. Moriarty, Emery and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends" ,Nature materials 4 , 864 (2005)
    [37]Y. Kim , S. A. Choulis, J. Nelson , D. D. C. Bradley , S. Cook and J. R. Durrant, "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene", Appl. Phys. Lett. 86 , 063502 (2005)
    [38]J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, D. D. C. Bradley, "Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films",Synth. Met. 2003, 139, 569.

    無法下載圖示 校內:2017-09-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE