| 研究生: |
楊焙凱 Yang, Bei-Kai |
|---|---|
| 論文名稱: |
熵驅動之小分子嵌入與複合液晶相的成長 Entropy-driven intercalation of guest molecules and growth of composite liquid crystalline phase |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | PBTT 、嵌入 、複合液晶相 |
| 外文關鍵詞: | PBTTT, intercalation, composite liquid crystals |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討導電液高分子poly( 2,5-bis ( 3-alkylthiophen-2-yl ) thieno[3,2-b] thiophene ) (PBTTT)和六甲基苯 (Hexamethylbenzene)間的混摻行為。由X-ray 繞射分析,發現PBTTT晶相可以做為Host,使guest分子六甲基苯嵌入至其ac面中。
嵌入六甲基苯後,PBTTT結晶轉變液晶溫度往低溫位移,故晶相穩定度下降。同時轉變為液晶相後,六甲基苯可以連續的進入PBTTT液晶相的ac面中,直到將空孔填滿,隨後熔化。而降溫時六甲基苯也可以陸續的離開。另外六甲基苯嵌入的數目,是由當時平衡溫度時的熱力學所決定的。這與一般主客複合相的形成觀點是截然不同的。由此,我們以焓(enthalpy)與熵(entropy)的變化,比較常見文獻與我們的研究的差異性。
最後,PBTTT可以利用六甲基苯方向性的結晶,以及兩者間的晶格匹配。於液晶相進行持溫,以增加分子的流動性,而進行磊晶。發現PBTTT可以形成大範圍特定方向的有序排列。
Conventionally the intercalation of guest molecules into host crystals is an enthalpy-driven exothermic process, which is viewed as an approach of crystal engineering and provides a way to create novel composite crystals for potential uses. Nevertheless, for the intercalation of hexamethylbenzene (HMB) into the liquid crystalline (LC) phase of semiconductive hair-rod conjugated polymers poly[2,5-bis(3-alkylthiophen-2-yl)thieno (3,2-b)thiophene] (PBTTT), a reversible process driven by the gain of system entropy has been unveiled. With the spread of PBTTT LC phase in between the stacking of HMB crystalline platelets, HMB molecules were found to leave from original crystalline lattices and migrate into the unoccupied space of PBTTT LC phase (Figure 1). This intercalation process involves the loss of lattice energy and the entropy gain by greater liberty and thermal motions of HMB molecules within LC phase of PBTTT. With the increase of temperature, step-wise increase of stacking periodicity of conjugate backbones was identified as a result of sequential intercalation of HMB molecules.
The migration of HMB molecules from solid-state crystals to the liquid crystals of PBTTT can be viewed as a new type of sublimation process, and nevertheless, this migration process is thermally reversible. Upon heating, HMB molecules are sequentially incorporated within the LC phase of PBTTT. During the cooling process, intercalated HMB molecules return and rejoin the crystalline packing. Within the LC stacking structure, the number of intercalated HMB molecules is fixed at each temperature as a saturated thermodynamic state, which is also critically influenced by the required volume of thermal motions of side chains. Thus the conventional definition of vacancy site in crystalline lattices should be further reviewed for describing the dynamic intercalation of guest molecules within LC phases, and the concept of composite LC phase is proposed.
[1] H. Yang, S. W. LeFevre, C. Y. Ryu, Z. Bao Appl. Phys. Lett. 2007, 90, 172116.
[2] M. Brinkmann J. Polym. Sci. Pt. B-Polym. Phys. 2011, 49, 1218.
[3] J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen,T. I. Sölling, M. Giles, I. McCulloch, H. Sirringhaus Chem. Mater. 2004, 16, 4772.
[4] Y. H. Lee, W. C. Yen, W. F. Su, C. A. Dai Soft Matter 2011, 7, 10429.
[5] J. Liu, M. Arif, J. Zou, S. I. Khondaker, L. Zhai Macromolecules 2009, 42, 9390.
[6] T. S. Shabi, S. Grigorian, M. Brinkmann, U. Pietsch, N. Koenen, N. Kayunkid, U. Scherf J. Appl. Polym. Sci. 2012, 125, 2335.
[7] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fre´chet, M. F. Toney Macromolecules 2005, 38, 3312.
[8] B. K. Sarker, J. Liu, L. Zhai, S. I. Khondaker ACS Appl. Mater. Interfaces 2011, 3, 1180.
[9] I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, M. F. Toney Nat. Mater. 2006, 5, 328.
[10] M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch, M. Heeney J. Am. Chem. Soc. 2007, 129, 3226.
[11] E. Cho, C. Risko, D. Kim, R. Gysel, N. C. Miller, D. W. Breiby, M. D. McGehee, M. F. Toney, R. J. Kline, J. L. Bredas J. Am. Chem. Soc. 2012, 134, 6177.
[12] B. H. Hamadani, D. J. Gundlach, I. McCulloch, M. Heeney Appl. Phys. Lett.2007, 91, 243512.
[13] T. Umeda, D. Kumaki, S. Tokito Appl. Phys. Lett. 2009, 105, 024516.
[14] W. C. Cheng, C. Y. Yang, B. Y. Kang, M. Y. Kuob, J. Ruan Soft Matter 2013, 9, 10822.
[15] 黃耀賢, 二成分混合溶劑之溶劑效應對聚三己基噻吩的型態、聚集與結晶之探討, 碩士論文, 2013.
[16] D. M. DeLongchamp, R. J. Kline, Y. Jung, E. K. Lin, D. A. Fischer, D. J. Gundlach, S. K. Cotts, A. J. Moad, L. J. Richter, M. F. Toney, M. Heeney, I. McCulloch Macromolecules 2008, 41, 5709.
[17] R. A. MacPhail, H. L. Straws, R. G. Snyder J. Phys. Chem. 1984, 88, 334-341.
[18] M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, L. J. Richter Langmuir 2007, 23, 834.
[19] Z. Bao, A. J. Lovinger Chem. Mater. 1999, 11, 2607.
[20] B.M.W. Langeveld-Voss, R.A.J. Janssen, E.W. Meijer J. Mol. Struct. 2000, 521, 285.
[21] A. Gadisa, W. D. Oosterbaan, K. Vandewal, J. C. Bolse´e, S. Bertho, J. D’Haen, L. Lutsen, D. Vanderzande, J. V. Manca Adv. Funct. Mater. 2009, 19, 3300.
[22] A. Tamanai, S. Beck, A. Pucci Displays 2013, 34, 399.
[23] M. Y. Chang, Y. H. Huang, Y. K. Han Org. Electron. 2014, 15, 251.
[24] R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney, I. McCulloch Macromolecules 2007, 40, 7960.
[25] M. Arslan, M. A. Tasdelen, T. Uyar, Y. Yagci Eur. Polym. J. 2015, 71, 259.
[26] X. Li, M. Xu, K. Zhang, D. Xie, X. Cao IEEE Trns. Dielectr. Electr. Insul. 2014, 21, 1705.
[27] P. Winberg, M. Eldrup, N. J. Pedersen, M. A. van Es, F. H.J. Maurer Polymer 2005, 46, 8239.
[28] S. Chirachanchai, N. Chiravanichanun, M. Miyata Int. J. Polym. Anal. Charact. 2003, 8, 417.
[29] R. Schollhorn Chem. Mater. 1996, 8, 1747.
[30] S. Kitagawa, R. Kitaura, S. I. Noro Angew. Chem. Int. Ed. 2004, 43, 2334.
[31] J. H. Ryu, H. J. Kim, Z. Huang, E. Lee, M. Lee Angew. Chem. Int. Ed. 2006, 45, 5304.
[32] M. Miyata, M. Shibakami, S. Chirachanchai, K. Takemoto, N. Kasai, K. Miki Nature 1990, 343, 446.
[33] K. Nakano, K. Sada, K. Nakagawa, K. Aburaya, N. Yoswathananont, N. Tohnai, M. Miyata Chem. Eur. J. 2005, 11, 1725.
[34] C. D. Rosa, P. Rizzo, O. R. de Ballesteros, V. Petraccone, G. Guerra Polymer 1999, 40, 2103.
[35] O. Tarallo, V. Petraccone, C. Daniel, G. Guerra Crystengcomm 2009, 11, 2381.
[36] O. Tarallo, V. Petraccone Macromolecules 2010, 43, 8549.
[37] V. Petraccone, O. Tarallo, V. Venditto, G. Guerra Macromolecules 2005, 38, 6965.
[38] O. Tarallo, M. M. Schiavone, V. Petraccone Macromolecules 2010, 43, 1455.
[39] V. Petraccone, O. Tarallo, V. Califano Macromolecules 2003, 36, 685.
[40] O. Tarallo, A. Buono, V. Califano, V. Petraccone Macromol. Symp. 2003, 203, 123.
[41] H. Marubayashi, S. Asai, M. Sumita Macromolecules 2012, 45, 1384.
[42] Y. Uda, F. Kaneko, N. Tanigaki, T. Kawaguchi Adv. Mater. 2005, 17, 1846.
[43] X. He, B. A. Collins, B. Watts, H. Ade , C. R. McNeill Small 2012, 8, 1920.
[44] N. C. Miller, E. Cho, M. J. N. Junk, R. Gysel, C. Risko, D. Kim, S. Sweetnam, C. E. Miller, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, A. Amassian, D. Acevedo-Feliz, C. Knox, M. R. Hansen, D. Dudenko, B. F. Chmelka, M. F. Toney, J. L. Brédas, M. D. McGehee Adv. Mater. 2012, 24, 6071.
[45] N. C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, C. E. Miller, S. Sweetnam, A. Sellinger, M. Heeney, I. McCulloch, J. L. Brédas, M. F. Toney, M. D. McGehee Adv. Energy Mater. 2012, 2, 1208.
[46] N. C. Miller, R. Gysel, C. E. Miller, E. Verploegen, Z. Beiley, M. Heeney, I. McCulloch, Z. Bao, M. F. Toney, M. D. McGehee J. Polym. Sci. Pt. B-Polym. Phys. 2011, 49, 499.
[47] L. Zhang, F. Liu, Y. Diao, H. S. Marsh, N. S. Colella, A. Jayaraman,
T. P. Russell, S. C. B. Mannsfeld, A. L. Briseno J. Am. Chem. Soc. 2014, 136, 18120.
[48] M. J. Lee, D. Gupta, N. Zhao, M. Heeney, I. McCulloch, H. Sirringhaus Adv. Funct. Mater. 2011, 21, 932.
[49] L. Biniek, N. Leclerc, T. Heiser, R. Bechara, M. Brinkmann Macromolecules 2013, 46, 4014.
[50] T. Higashi, N. Yamasaki, H. Utsumi, H. Yoshida, A. Fujii, M. Ozaki Jpn. J. Appl. Phys. 2012, 51, 02BK11.
[51] Q. Sun, K. Park, L. Dai J. Phys. Chem. C 2009, 113, 7892.
[52] H. Wang, J. Liu, Y. Han Polymer 2013, 54, 948.
[53] Y. Reynier, R. Yazami, B. Fultz J. Power Sources 2003,119–121, 850.
[54] A. M. Lazarin, C. Airoldi Thermochim. Acta 2007, 454, 43.
[55] L. M. Nunes, C. Airoldi Thermochim. Acta 2005, 435, 118.
[56] A. M. Lazarin, C. Airoldi Thermochim. Acta 2005, 437, 114.
[57] H. P. Hopkins, W. D. Wilson Biopolymers 1987, 26, 1347.
[58] L. O. Brockway, J. M. J. Robertson Chem. Soc. Part II 1939, 1324.
[59] K. Lonsdale Proc. Roy. SOC. A 1929, 123, 494.
校內:2021-07-01公開