簡易檢索 / 詳目顯示

研究生: 張瑞園
Chang, Ray-Yuan
論文名稱: 綴飾態原子的量子干涉和雙原子分子的軌道角動量去耦合
Quantum Interference on Dressed-Atom and L-uncoupling on Diatomic Molecule
指導教授: 蔡錦俊
Tsai, Chin-chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 112
中文關鍵詞: 量子干涉電磁誘導透明雷射光譜
外文關鍵詞: EIT, Quantum Interference, Laser spectroscopy
相關次數: 點閱:106下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,分別對室溫下或磁光聚中低溫下的銫原子以及雙原子鈉分子的樣本,利用高解析與高靈敏度的雷射光譜進行研究。在銫原子光譜方面,涵蓋三個主題。第一個主題:在室溫下的銫原子,利用階梯狀能階系統,在耦合雷射強度固定下,當探測雷射強度變化時,我們觀測到量子干涉現象與拉曼吸收光譜之間的競爭效應,並測得一個極為狹隘(2MHz)的競爭窗口。量子干涉現象與拉曼吸收光譜分別佔據此一窗口兩端,彼此的光譜特性迥異。第二點:在相同系統下,我們觀測到銫原子雙重綴飾態。在此實驗中,雙重綴飾態以類比於Aulter-Townes雙重態的形式,表現在電磁誘導透明的雙峰譜線上。第三點:以銫原子磁光聚的超低溫原子團為樣本,使用抑制與恢復的方法來觀測電磁誘導透明時,探測雷射的吸收與穿透情形。實驗結果驗證了雷射線寬影響電磁誘導透明的同調性質。令外,在雙原子鈉分子的雷射光譜方面,我們將鈉金屬放置於不鏽鋼熱管爐中加熱到360℃,獲得足夠之鈉的雙原子分子蒸氣作為樣本。此實驗中,我們分別觀測到雙原子分子的高雷德堡電子態中,軌道角動量L的去耦合效應,以及Λ簡併態能階的分裂。當雙原子分子的外圍電子,被激發到較高的雷德堡能態時,軌道角動量L的耦合方式,將由罕德定則(a)過渡到罕德定則(d);利用最小平方擬合,求得能階分裂隨著能階的振動量子數與轉動量子數的增加而增加來探討軌道角動量去耦合特性。

    Atomic and molecular spectroscopy is one of the most fundamental techniques which reveal
    the physics described by the quantum mechanics. Therefore, investigations of the spectroscopic characteristics on both samples have attracted considerable attention over the past decades. Hence, the quantum interference phenomenon of the cesium atom and the interaction between
    atoms of the sodium diatomic molecule were explored in his work. Three topics of the Cesium atomic spectroscopy regarding on the quantum interference are in this thesis. First, the investigation clarifies the transition between the coherent population trapping and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A ompetition window of thistransition due to the probe Rabi frequency was found to be as narrow as 2 MHz. For a weak
    probe, the spectrum of electromagnetically induced transparency (EIT) associated with quantum interference suggests that the e®ect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an
    electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the e®ective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important
    role in the interaction. A theory that is based on density matrix simulation with or without the Doppler effect can qualitatively fit the experimental data. The coherence of atom-photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source. Secondly, doubly dressed states in a ladder-type two-photon, three-level coupling system are observed. The doublet signal of EIT is interpreted as arising from the absorption and gain
    components of the Mollow spectrum. The separation of the EIT doublet matches the theoretical prediction. A numerical simulation demonstrates that the Doppler velocity group may perturb the light shift from the symmetric center of the EIT doublet. The quantum nature of
    the EIT system signi¯cantly suppresses Doppler broadening. The third, subnatural linewidth in an optical transition on Cs was obtained by the suppression and recovery of the trapping of atoms. Cold Cs atoms in a magneto-optical trap (MOT) were irradiated using a weak probe laser to suppress MOT loading. When a counter-propagating coupling laser was directed to be resonant with the upper transition, the probe laser was induced to transmit and the MOT loading was recovered. This work investigates quantitatively this behavior by applying simulated electromagnetically induced transparency, taking into account the linewidth of the lasers as a decoherence source. Additionally, the experimental observations of the lambda-doubling and
    the L-uncoupling of the sodium dimer were discussed in this thesis. The lambda-doubling in Na2
    5spg and 5sdg states has been measured using cw high-resolution optical-optical double resonance (OODR) spectroscopy. The lambda-doubling constants depending on both the vibrational and rotational quantum numbers have been derived. Normally, the lambda-doubling separations of
    the delta states are much smaller than those of the pistates. However, the constants of the 5sdg
    state are much lager than those of the B state. This attributes to the L-uncoupling. At the high-lying Rydberg states, the farther the most outer electron moves apart from its nuclei, the weaker the electronic angular momentum L couples to its internuclear axis. To the limit
    of L-uncoupling, the Hund's coupling cases(d) applies. The transition of the Hund's coupling cases due to L-uncoupling removes the degeneracy of Lambda-doubling in the Na2 5sdg state. This makes the separation of lambda-doubling in the high-lying delta states larger than those in the lower pi states. The first order of lambda-doubling constants in the Na2 5sdg, 5spg states are experimentally
    measured and are significantly larger than those in the B state. This splitting is affected by the perturbations between the adjacent states as well as the L-uncoupling from its internuclear axis.

    Contents Abstract i Abstract in Chinese iii Acknowledgement iv v Contents viii List of Figures xii 1 Introduction 1 1.1 The dressed states description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The development and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Theoretical description 9 2.1 The interaction picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Density matrix approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Time evolution of the density matrix . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Steady state solutions of the density matrix . . . . . . . . . . . . . . . . . 17 2.4 Classical forced damping oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Room temperature electromagnetically induced transparency 22 3.1 Power dependence of the EIT signal . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Theoretical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.4 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.5 Conclusions on this subsection . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Doubly dressed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.4 Conclusions on this subsection . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Laser cooling and trapping of cesium atom 41 4.1 Doppler cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Optical molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.1 Optical arrangement: the main trapping beam . . . . . . . . . . . . . . . 51 4.2.2 Optical arrangement: the repumper . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Magnetic ¯eld coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.4 The vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.5 The MOT con¯guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Electromagnetically induced transparency in the laser-cooled Cs atom 60 5.1 Trap loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.1 Internal scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.2 External scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Observation of the electromagnetically induced transparency . . . . . . . . . . . 66 5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.2 The time sequence of the experimental procedure . . . . . . . . . . . . . . 68 5.2.3 The suppression and the recovery spectrum . . . . . . . . . . . . . . . . . 70 5.2.4 The power dependence of the suppression and the recovery EIT signal . . 70 5.2.5 Conclusions on this subsection . . . . . . . . . . . . . . . . . . . . . . . . 73 6 L-uncoupling and ¤-doubling on diatomic molecule 74 6.1 Observation of L-uncoupling in the 5 1¢g Rydberg state of Na2 . . . . . . . . . . 74 6.1.1 Introduction of the L-uncoupling . . . . . . . . . . . . . . . . . . . . . . . 74 6.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.4 Summary of the observation of the L-uncoupling . . . . . . . . . . . . . . 84 6.2 ¤-doubling investigation of the 5 1¦g Rydberg state of Na2 . . . . . . . . . . . . 85 6.2.1 General description of the ¤-doubling . . . . . . . . . . . . . . . . . . . . 85 6.2.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2.3 Molecular constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2.4 Summary on the observation of the ¤-doubling splitting . . . . . . . . . . 89 7 Conclusion 91 A Some detailed derivations of chapter two 93 A.1 The relation between the density matrix approach and the interaction picture . . 93 A.2 The coherent population trapping(CPT) . . . . . . . . . . . . . . . . . . . . . . . 94 B The Doppler-free saturation absorption spectrum(DFSAS) and its deriva- tives 97 B.1 The combination of the DFSAS and the modulation spectroscopy . . . . . . . . . 97 B.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 B.2.1 Phase sensitive device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 B.2.2 Modulation signal on the absorption of a two-level system . . . . . . . . . 99 B.3 Experimental setup of the DFSAS . . . . . . . . . . . . . . . . . . . . . . . . . . 101 B.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 B.4.1 The double-path con¯guration of the DFSAS for the main trapping laser 104 Bibliography 106

    Bibliography
    [1] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188,
    1969 (1969).
    [2] F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Observation of Ampli¯cation in a
    Strongly Driven Two-Level Atomic System at Optical Frequencies, Phys. Rev. Lett. 38,
    1077 (1977).
    [3] C. Cohen-Tannoudji and S. Reynaud, Dressed-Atom Description of Resonance Fluorescence
    and Absorption Spectra of a Multi-Level Atom in an Intense Laser Beam, J. Phys. B: At.
    Mol. Phys. 10, 345 (1977).
    [4] C. Cohen-Tannoudji and J. D. Roc, G. Grvnberg, Atom-Photon Interactions: Basic Pro-
    cesses and Applications, John Wiley and Sons, New York, 1992.
    [5] P. R. Berman, B. Dubetsky, and J. Guo, Recoil-Induced Resonances in Pump-Probe Spec-
    troscopy, Phys. Rev. A 51, 3947 (1995).
    [6] S. H. Autler and C. H. Townes, Stark E®ect in Rapidly Varying Fields, Phys. Rev. 100, 703
    (1955).
    [7] H. R. Gray and C. R. Stroud, Jr., Autler-Townes E®ect in Double Optical Resonance, Opt.
    Commun. 25, 359 (1978).
    [8] K. J. Boller, A. Imamolu, and S. E. Harris, Observation of Electromagnetically Induced
    Transparency, Phys. Rev. Lett. 66, 2593 (1991).
    [9] J. E. Field, K. H. Hahn, and S. E. Harris, Observation of Electromagnetically Induced
    Transparency in Collisionally Broadened Lead Vapor, Phys. Rev. Lett. 67, 3062 (1991).
    [10] S. Harris, Electromagnetically Induced Transparency, Physics Today 50, 36 (1997).
    [11] J. P. Marangos, Electromagnetically Induced Transparency, J. of Mod. Opt. 45, 471 (1998).
    [12] F. Michael, I. Atac, and P. M. Jonathan, Electromagnetically Induced Transparency: Optics
    in Coherent Media, Rev. Mod. Phys. 77, 633 (2005).
    [13] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Continuous-Wave
    Electromagnetically Induced Transparency: A Comparison of V, ¤, and Cascade Systems,
    Phys. Rev. A 52, 2302 (1995).
    [14] J. Dalibard and C. Cohen-Tannoudji, Laser Cooling Below the Doppler Limit by Polariza-
    tion Gradients: Simple Theoretical Models, J. Opt. Soc. Am. B 6, 2023 (1989).
    [15] D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, Observation of Lasing
    Mediated by Collective Atomic Recoil, Phys. Rev. Lett. 91, 183601 (2003).
    [16] D. R. Meacher, D. Boiron, H. Metcalf, C. Salomon, and G. Grynberg, Method for Ve-
    locimetry of Cold Atoms, Phys. Rev. A 50, R1992 (1994).
    [17] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W.
    Ketterler, Superradiant Rayleigh Scattering from a Bose-Einstein Condensate, Science 285,
    571 (1999).
    [18] M. Yan, E. G. Rickey, and Y. Zhu, Observation of Doubly Dressed States in Cold Atoms,
    Phys. Rev. A 64, 013412 (2001).
    [19] L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, Autler-
    Townes E®ect in a Strongly Driven Electromagnetically Induced Transparency Resonance,
    Phys. Rev. A 72, 053801 (2005).
    [20] K. Bergmann, H. Theuer, and B. W. Shore, Coherent Population Transfer among Quantum
    States of Atoms and Molecules, Rev. Mod. Phys. 70, 1003 (1998).
    [21] K. Petr, T. Ioannis, and S. Moshe, Colloquium: Coherently Controlled Adiabatic Passage,
    Rev. Mod. Phys. 79, 53 (2007).
    [22] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, An Experimental Method for the Observa-
    tion of R.F. Transitions and Laser Beat Resonances in Oriented Na Vapour, Nuovo Cimento
    B. 36, 5 (1976).
    [23] S. E. Harris and Y. Yamamoto, Photon Switching by Quantum Interference, Phys. Rev.
    Lett. 81, 3611 (1998).
    [24] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of Coherent Optical In-
    formation Storage in an Atomic Medium Using Halted Light Pulses, Nature (London) 409,
    490 (2001).
    [25] D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, M. D. Lukin, Storage of
    Light in Atomic Vapor, Phys. Rev. Lett. 86, 783 (2001).
    [26] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Stationary Pulses of Light in an Atomic Medium,
    Nature (London) 426, 638 (2003).
    [27] D. N. Matsukevich, T. Chaneliere, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. B.
    Kennedy, and A. Kuzmich, Entanglement of a Photon and a Collective Atomic Excitation,
    Phys. Rev. Lett. 95, 040405 (2005).
    [28] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman,
    and A. Kuzmich, Quantum Telecommunication Based on Atomic Cascade Transition, Phys.
    Rev. Lett. 96, 093604 (2006).
    [29] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser
    Cooling Below the One-Photon Recoil Energy by Velocity-Selective Coherent Population
    Trapping, Phys. Rev. Lett. 61, 826 (1988).
    [30] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Degenerate Quantum-Beat Laser: Lasing
    Without Inversion and Inversion Without Lasing, Phys. Rev. Lett. 62, 2813 (1989).
    [31] S. E. Harris, Lasers Without Inversion: Interference of Lifetime-Broadened Resonances,
    Phys. Rev. Lett. 62, 1033 (1989).
    [32] G. S. Agarwal, G. Vemuri, and T. W. Mossberg, Lasing Without Inversion: Gain Enhance-
    ment through Spectrally Colored Population Pumping, Phys. Rev. A 48, R4055 (1993).
    [33] G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and
    M. O. Scully, Laser Oscillation Without Population Inversion in a Sodium Atomic Beam,
    Phys. Rev. Lett. 76, 2053 (1996).
    [34] T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, Optical Clocks Based on Ultra-
    narrow Three-Photon Resonances in Alkaline Earth Atoms, Phys. Rev. Lett. 94, 050801
    (2005).
    [35] G. S. Agarwal and W. Harshawardhan, Inhibition and Enhancement of Two Photon Ab-
    sorption, Phys. Rev. Lett. 77, 1039 (1996).
    [36] S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, Nonlinear
    Optics via Double Dark Resonances, Phys. Rev. A 68, 063801 (2003).
    [37] H. Wang, D. Goorskey, and M. Xiao, Enhanced Kerr Nonlinearity via Atomic Coherence
    in a Three-Level Atomic System, Phys. Rev. Lett. 87, 073601 (2001).
    [38] M. Mitsunaga and N. Imoto, Observation of an Electromagnetically Induced Grating in
    Cold Sodium Atoms, Phys. Rev. A 59, 4773 (1999).
    [39] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Spatial Con-
    sequences of Electromagnetically Induced Transparency: Observation of Electromagnetically
    Induced Focusing, Phys. Rev. Lett. 74, 670 (1995).
    [40] S. Z. Jin, Y. Q. Li, and M. Xiao, Hyper¯ne Spectroscopy of Highly-Excited Atomic States
    Based on Atomic Coherence, Opt. Commun. 119, 90 (1995).
    [41] A. Krishna, K. Pandey, A. Wasan and V. Natarajan, High-Resolution Hyper¯ne Spec-
    troscopy of Excited States Using Electromagnetically Induced Transparency, Europhys. Lett.
    72, 221 (2005).
    [42] T. H. Yoon, C. Y. Park, and S. J. Park, Laser-Induced Birefringence in a Wavelength-
    Mismatched Cascade System of Inhomogeneously Broadened Yb Atoms, Phys. Rev. A 70,
    061803 (2004).
    [43] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of Highly
    Excited Rydberg States Using Electromagnetically Induced Transparency, Phys. Rev. Lett.
    98, 113003 (2007).
    [44] J. J. Sakurai, Modern Quantum Mechanics, Revised ed., Addison-Wesley, Massachusetts,
    1994.
    [45] M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics, Addison-Wesley, Mas-
    sachusetts, 1974.
    [46] W. DemtrÄoder, Laser Spectroscopy, Springer; 3rd ed., 2002.
    [47] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Fast-Beam Laser Lifetime
    Measurements of the Cesium 6p 2P1=2;3=2 States, Phys. Rev. A 60, 3648 (1999).
    [48] G. Alessandretti, F. Chiarini, G. Gorini and F. Petrucci, Measurement of the Cs 8S-Level
    Lifetime, Opt. Commun. 20, 289 (1977).
    [49] S. Wielandy and A. L. Gaeta, Investigation of Electromagnetically Induced Transparency
    in the Strong Probe Regime, Phys. Rev. A 58, 2500 (1998).
    [50] S. Shepherd, D. J. Fulton, and M. H. Dunn, Wavelength Dependence of Coherently Induced
    Transparency in a Doppler-Broadened Cascade Medium, Phys. Rev. A 54, 5394 (1996).
    [51] J. G. Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically Induced Trans-
    parency in Ladder-Type Inhomogeneously Broadened Media: Theory and Experiment, Phys.
    Rev. A 51, 576 (1995).
    [52] A. J. Leggett, Bose-Einstein Condensation in the Alkali Gases: Some Fundamental Con-
    cepts, Rev. Mod. Phys. 73, 307 (2001).
    [53] E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein Condensation in a Dilute
    Gas, the First 70 Years and Some Recent Experiments, Rev. Mod. Phys. 74, 875 (2002).
    [54] T. W. Hansch and A. L. Schawlow, Cooling of Gases by Laser Radiation, Opt. Comm. 13,
    68 (1975).
    [55] D. Wineland and H. Dehmelt, Proposed 1014 ¢º < º Laser Fluorescence Spectroscopy on
    Tl+ Mono-Ion Oscillator III (side band cooling), Bull. Am. Phys. Soc. 20, 637 (1975).
    [56] D. J. Wineland, R. E. Drullinger, and F. L. Walls, Radiation-Pressure Cooling of Bound
    Resonant Absorbers, Phys. Rev. Lett. 40, 1639 (1978).
    [57] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-Dimensional Viscous
    Con¯nement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett. 55,
    48 (1985).
    [58] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of Neutral
    Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987).
    [59] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Obser-
    vation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).
    [60] M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. W. Hagley, and L. Deng, Phase-
    Coherent Ampli¯cation of Matter Waves, Science 286, 2309 (1999).
    [61] A. Ashkin, Design for an Optical CW Atom Laser, Science 101, 12108 (2004).
    [62] Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt,
    Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential, Phys.
    Rev. Lett. 92, 050405 (2004).
    [63] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I. Bloch, Quantum Phase Tran-
    sition from a Super°uid to a Mott Insulator in a Gas of Ultracold Atoms, Nature 415, 39
    (2002).
    [64] Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W.
    Hagley, Control of Light Pulse Propagation with Only a Few Cold Atoms in a High-Finesse
    Microcavity, Phys. Rev. Lett. 89, 233001 (2002).
    [65] W. C. Fang, Electromagnetically Induced Transparency of Cs atom: Room Temperature
    and Cold Sample, Master Thesis, National Cheng Kung University (2007).
    [66] J. H. Van Vleck, On ¾-Type Doubling and Electron Spin in the Spectra of Diatomic
    Molecules, Phys. Rev. 33, 467 (1929).
    [67] G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic
    Molecules, Robert E. Krieger Publishing Co., Malabar, Florida, 1989.
    [68] H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules,
    Academic Press Inc.(London) Ltd., 1986.
    [69] G. Herzberg and Ch. Jungen, Rydberg Series and Ionization Potential of the H2 Molecule,
    J. Mol. Spectrosc. 41, 425 (1972).
    [70] W. G. Sturrus, P. E. Sobol, and S. R. Lundeen, Observation of High-Angular-Momentum
    Rydberg States of H2 in a Fast Beam, Phys. Rev. Lett. 54, 792 (1985).
    [71] N. Bjerre, R. Kachru, and H. Helm, Three-Photon Double-Resonance Spectroscopy of Au-
    toionizing Rydberg States in H2, Phys. Rev. A 31, 1206 (1985).
    [72] R. D. Knight and L. G. Wang, Observation of Triplet nd Autoionizing Rydberg States in
    H2, Phys. Rev. Lett. 55, 1571 (1985).
    [73] L. Guenadiy, L. A. Marjatta, and L. Li, Enhanced Access to the Dark Triplet States of
    7Li2 through New Singlet-Triplet A1§+
    u b3¦u Perturbation Window Levels: Perturbation-
    Facilitated Optical-Optical Double Resonance Study of the 23§+
    g State, J. Mol. Spectrosc.
    205, 73 (2001).
    [74] R. S. Mulliken and A. Christy, ¤-Type Doubling and Electron Con¯gurations in Diatomic
    Molecules, Phys. Rev. 38, 87 (1931).
    [75] R. K. Hinkley, J. A. Hall, T. E. H. Walker, and W. G. Richards, ¤-Doubling in 2¦ States
    of Diatomic Molecules, J. Phys. B 5, 204 (1972).
    [76] A. Hishikawa, H. Sato, and K. Yamanouchi, ­-type Doubling Reversal in the B3¦1 State
    of 200HgAr as a Probe of the Long-Range Potential of the A3¦0+ State, J. Chem. Phys.
    108, 9202 (1998).
    [77] P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed, National
    Research Council of Canada, Canada, 1998.
    [78] R. S. Mulliken, The Interpretation of Band Spectra. Parts I, IIa, IIb, Rev. Mod. Phys. 2,
    60 (1930).
    [79] N. W. Carlson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Two-Step Polarization-
    Labeling Spectroscopy of Excited States of Na2, Phys. Rev. A 24, 822 (1981).
    [80] Y. L. Pan, S. Dianping, L. S. Ma, D. Liangen, and Z. G. Wang, Optical-Optical Double-
    Resonance Excitation Spectra of the (6d)1¢g and (7d)1¢g Rydberg States in Na2, J. Mol.
    Spectrosc. 169, 534 (1995).
    [81] P. Kusch and M. M. Hessel, An Analysis of the B1¦u ¡ X1X+
    g Band System of Na2, J.
    Chem. Phys. 68, 2591 (1978).
    [82] J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Radiative Transition Probabil-
    ities for the B1¦u ¡ X1X+
    g Band System of Na2 Excited by the 4658ºA Line of the Argon
    Ion Laser, Spectrochim. Acta, Part A 51, 1879 (1995).
    [83] J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Analysis and Transition
    Probabilities of the B1¦u ¡ X1X+
    g System of Na2 Excited by the 5017ºA Line of the Argon
    Ion Laser, Spectrochim. Acta, Part A 52, 409 (1996).
    [84] J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, Fluorescence of Na2 Excited
    by the 4545ºA Line of the Argon Ion Laser, J. Quant. Spectrosc. Radiat. Transfer. 56, 353
    (1996).
    [85] J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, Analysis and
    Transition Probabilities for the Na2 B1¦u ¡X1X+
    g System Using as Excitation the 4727ºA
    Ar+ Laser Line, J. Mol. Spectrosc. 191, 248 (1998).
    [86] A. Pardo, Laser-Induced Fluorescence of Molecular Sodium, Chem. Phys. Lett. 309, 55
    (1999).
    [87] J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Transition Proba-
    bilities and Average Cross Sections for the Na2 B1¦u ¡X1X+
    g System Using as Excitation
    the 4880ºA Ar+ Laser Line, Spectrochim. Acta, Part A 56, 769 (2000).
    [88] J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Analysis and
    Transition Probabilities of the Na2 B1¦u ¡ X1X+
    g Band System of Na2 Excited by the
    4579ºA Ar+ Laser Line, J. Quant. Spectrosc. Radiat. Transfer. 65, 729 (2000).
    [89] A. Pardo, Laser-Induced Irradiance Fluorescence of Molecular Sodium Excited by the 4765ºA
    Ar+ Laser Line, J. Mol. Spectrosc. 199, 225 (2000).
    [90] L. Li and R. W. Field, CW Optical-Optical Double Resonance studies of the
    23¦g; 33¦g; 43¦+
    g ; and 13¢g Rydberg states of Na2, J. Mol. Spectrosc. 117, 245 (1986).
    [91] Coherent Autoscan Operator's Manual-PC Version (Coherent, Int. partno. 0162-806-00,
    1994, USA).
    [92] Y. L. Pan, L. S. Ma, L. E. Ding, and D. P. Sun, Optical-Optical Double-Resonance Excita-
    tion Spectra of the (8d)1¢g High-Lying Rydberg State in Na2, J. Mol. Spectrosc. 162, 178
    (1993).
    [93] M. M. Hessel and C. R. Vidal, The B1¦u ¡ X1X+
    g Band System of the 7Li2 Molecule, J.
    Chem. Phys. 70, 4439 (1979).
    [94] See EPAPS Document No. E-JCPSA6-123-001546 for the term values from experimental
    observations(OBS) and calculations from ¯tted molecular constants (CALC) and the di®er-
    ence between them(O-C) for all the observed levels of the 5 1¢g state of Na2. This document
    can be reached via a direct link in the online article's HTML reference section or via the
    EPAPS home-page (http://www.aip.org/pubservs/epaps.html).
    [95] S. Magnier, Ph. Millie, O. Dulieu, and F. Masnou-Seeuws, Potential Curves for the Ground
    and Excited States of the Na2 Molecule Up to the (3s+5p) Dissociation Limit: Results of
    Two Di®erent E®ective Potential Calculations, J. Chem. Phys. 98, 7113 (1993).
    [96] K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knockel, E.
    Tiemann, H. Wang, P. L. Gould, and W. C. Stwalley, Direct Measurement of the Ground-
    State Dissociation Energy of Na2, Phys. Rev. A 54, R1006 (1996).
    [97] W. C. Martin and R. Zalubas, Energy Levels of Sodium Na I through Na XI, J. Phys.
    Chem. Ref. Data 10, 153 (1981).
    [98] A. L. G. Rees, The Calculation of Potential-Energy Curves from Band-Spectroscopic Data,
    Proc. Phys. Soc. 59, 998 (1947).
    [99] Ch. Jungen and O. Atabek, Rovibronic Interactions in the Photoabsorption Spectrum of
    Molecular Hydrogen and Deuterium: An Application of Multichannel Quantum Defect Meth-
    ods, J. Chem. Phys. 66, 5584 (1977).
    [100] Ch. Jungen and Dan Dill, Calculation of Rotational-Vibrational Preionization in H2 by
    Multichannel Quantum Defect Theory, J. Chem. Phys. 73, 3338 (1980).
    [101] B. Hemmerling, R. Bombach, and W. DemtrÄoder, Rotational Perturbations between Ry-
    dberg States of Li2, J. Chem. Phys. 87, 5186 (1987).
    [102] M. Schwarz, R. Duchowicz, W. DemtrÄoder, and Ch. Jungen, Autoionizing Rydberg States
    of Li2: Analysis of Electronic-Rotational Interactions, J. Chem. Phys. 89, 5460 (1988).
    [103] A. L. Roche and Ch. Jungen, Multichannel Quantum Defect Analysis of Preionizing Ry-
    dberg States of Li2 Including Rovibronic Interactions, J. Chem. Phys. 98, 3637 (1993).
    [104] F. Hund, Zeits. F. Physik., Zur Deutung einiger Erscheinungen in den Molekelspektren,
    36, 657 (1926).
    [105] E. Klisch, S. P. Belov, R. Schieder, G. Winnewisser, Transitions between Hund's Coupling
    Cases for the X2¦ state of NO, Molec. Phys 97, 65(1999).
    [106] Y. Huang and R. J. L. Roy, Vapor Transport within the Thermal Di®usion Cloud Chamber,
    J. Chem. Phys. 113, 7398 (2003).
    [107] M. Tamanis, M. Auzinsh, I. Klincare, O. Nikolayeva, R. Ferber, E. A. Pazyuk, A. V.
    Stolyarov, and A. Zaitsevskii, NaK ¤ Doubling and Permanent Electric Dipoles in Low-
    Lying 1¦ States: Experiment and Theory, Phys. Rev. A. 58, 1932(1998).
    [108] S. O. Adamson, A.Zaitsevskii, E. A. Pazyuk, A. V. Stolyarov, M. Tamanis, R. Ferber,
    and R. Cimiraglia, The Origin of ¤-Doubling E®ect for the B1¦ and D1¦ States of NaK,
    J. Chem. Phys. 113, 8589 (2000).
    [109] A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Observation
    of a Three-Photon Electromagnetically Induced Transparency in Hot Atomic Vapor, Phys.
    Rev. A 65, 043817 (2002).
    [110] V. Wong, R. S. Bennink, A. M. Marino, R. W. Boyd, C. R. Stroud, Jr., and F. A.
    Narducci, In°uence of Coherent Raman Scattering on Coherent Population Trapping in
    Atomic Sodium Vapor, Phys. Rev. A 70, 053811 (2004).
    [111] K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, Competition between Elec-
    tromagnetically Induced Transparency and Stimulated Raman Scattering, Phys. Rev. A 73,
    013807 (2006).

    下載圖示 校內:立即公開
    校外:2007-12-24公開
    QR CODE