簡易檢索 / 詳目顯示

研究生: 孫煜宸
Sun, Yu-Chen
論文名稱: 上臂踏車運動合併血流限制對老年人姿勢雙重作業及認知功能的促進效應
Improvement of Postural Dual-Task Performance and Cognitive Function Following Upper Limb Arm Ergometry with Blood Flow Restriction in Older Adults
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 52
中文關鍵詞: 血流限制結合上臂踏車運動姿勢雙重作業任務路徑描繪測試
外文關鍵詞: Blood flow restriction, Arm ergometry, Postural Dual-task, Trail Making Test
相關次數: 點閱:12下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究目的:隨著年齡增長,老年人的認知功能與姿勢雙重作業控制能力容易受到前額葉皮質退化的影響,進而提高跌倒風險。血流限制訓練(blood flow restriction, BFR)作為一種低強度、低風險的運動策略,可提升老年族群在運動中參與執行功能相關活動的意願。先前研究指出,結合下肢BFR與跑步機行走訓練能即時改善年長者的執行功能與姿勢雙重作業表現,並提升心率變異性(heart rate variability, HRV)。本研究延續上述成果,進一步探討單次上肢BFR結合上肢踏車運動對老年人認知功能與姿勢雙重作業表現的即時效應。
    方法:本研究共招募28名老年人(平均年齡 69.0 ± 3.2 歲,男性13名,女性15名)參與,採隨機交叉設計進行兩次間隔一個月的實驗。14位受試者先進行血流限制(BFR)結合上肢踏車運動,之後再執行未加壓的上肢踏車運動;另14位受試者則以相反順序進行相同的實驗流程。在 BFR 條件下,將加壓綁帶至於上臂,並加壓至每位參與者收縮壓的 80% 以限制靜脈回流。兩組都進行了上肢踏車運動,男性強度為 15 瓦,女性強度為 10 瓦,共進行三次,共 21 分鐘。所有受試者於每次運動介入前後皆接受前後測,包括認知功能測驗(Trail Making Test, TMT)與姿勢雙重作業表現評估(Posture Dual Task)。訓練前後的標準化差異計算方式為:(後測值 − 前測值)/前測值。
    研究結果:在姿勢雙重作業任務中,拍擊反應燈反應時間於兩種情況內皆顯著下降(BFR情況:p < 0.01;控制情況:p < 0.01),但兩情況間標準化差異無顯著差異(p = 0.997)。拍擊數量於兩種情況內皆顯著上升(BFR情況:p < 0.01;控制情況:p < 0.01),但兩情況間標準化差異無顯著差異(p = 0.382)。正確拍擊率方面,BFR情況於介入後有正確率顯著提升(p < 0.01),控制情況僅有邊緣顯著差異(p = 0.091),然而兩情況間之標準化差異未達顯著(p = 0.348)。足底壓力中心移動面積(COP_Area)僅有BFR情況在訓練後呈現顯著下降情形(p = 0.01),BFR情況之標準化差異同時顯著小於控制情況(BFR情況: -9.44 ± 24.33%, 控制情況: 4.22 ± 20.61%, p = 0.004)。足底壓力中心移動前後方向的均方根(RMS)在兩情況內皆未達顯著差異(BFR情況:p = 0.151;控制情況:p = 0.523),兩情況之間差異亦不顯著(p = 0.207);足底壓力中心左右方向之RMS在BFR情況內顯著下降(BFR情況:-10.15 ± 17.76%, p < 0.01),在控制情況內則顯著上升 (控制情況: 5.99 ± 13.52%, p = 0.016),兩情況間標準化差異亦達顯著水準(p < 0.001)。在認知測驗方面,TMT Part A完成時間僅控制情況內有顯著下降(p < 0.01),BFR情況則未達顯著(p = 0.217)。TMT Part B兩情況完成時間皆呈顯著下降(BFR情況: p< 0.01;控制情況: p < 0.01),但兩情況間之標準化差異並不無顯著(p = 0.668)。在Part B與Part A的完成時間差值(TMT-B–A),於兩種情況皆顯著下降 (BFR情況: p= 0.004;控制情況: p= 0.002 );相較於控制情況,BFR情況在Part B與Part A兩種情況的完成時間差值的標準化差異顯著下降(p= 0.007)。
    結論:老年人進行單次上肢BFR結合上肢踏車運動後,在姿勢雙重作業中的姿勢控制表現優於未加壓的上肢踏車運動。此外,上肢BFR結合運動亦展現部分提升認知功能的效應。綜合而言,本研究結果支持上肢BFR訓練可作為一項具潛力的介入策略,特別適用於下肢暫時活動受限的老年族群,有助於提升姿勢雙重作業表現與執行功能,對預防跌倒及促進認知健康具有潛在臨床應用價值。

    關鍵詞:血流限制結合上臂踏車運動、姿勢雙重作業任務、路徑描繪測試

    Degeneration of the prefrontal cortex in older adults may impair their performance in postural dual-task situations. This study investigated whether blood flow restriction (BFR) combined with upper limb arm ergometry could enhance executive function and postural control in older adults.
    A total of 28 older adults (69.0 ± 3.2 years old; 13 males and 15 females) participated in the study. Each participant completed both the BFR and control conditions in a randomized order, with a one-month interval between sessions.
    In the BFR condition, pneumatic cuffs were applied to the participants' upper arms and inflated to 80% of their systolic blood pressure to restrict venous return. In both conditions, participants performed upper limb ergometer exercises—15 watts for males and 10 watts for females—across three sets, totaling 21 minutes.
    The results showed that compared to the control group, the combination of BFR and arm ergometry effectively reduced the center of pressure area and improved postural sway consistency. In terms of cognitive performance, both groups demonstrated significant improvements in the more complex task (Trail Making Test Part B), but the BFR group showed greater improvement in the completion time difference between Part A and Part B (TMT-B–A), indicating a more pronounced enhancement in executive function.
    In conclusion, BFR combined with upper limb ergometry can improve postural stability and executive function in older adults. This approach shows clinical potential and may serve as an effective strategy for fall prevention.

    Key words: Blood flow restriction, Arm ergometry, Postural Dual-task, Trail Making Test.

    INTRODUCTION
    With aging, cognitive decline linked to prefrontal cortex degeneration can impair dual-task control and increase fall risk in older adults. Blood flow restriction (BFR) combined with upper limb arm ergometry offers a low-intensity exercise option that may promote physical activity in this population. While most BFR research has focused on muscle strength and hypertrophy, recent studies show that lower limb BFR with treadmill walking can immediately enhance postural dual-task performance, cognitive function, and heart rate variability in older adults. However, it remains unclear whether similar benefits extend to upper limb BFR exercise. This study therefore investigated whether a single session of BFR combined with upper limb arm ergometry could improve postural dual-task performance and cognitive function in older adults.

    MATERIALS AND METHODS
    Twenty-eight older adults (mean age = 69.0 ± 3.2 years; 13 males, 15 females) participated in the study. Participants were randomly assigned to two groups and completed two experimental sessions one month apart. Fourteen participants first underwent blood flow restriction (BFR) combined with upper limb arm ergometry (BFR condition), followed by a control session without BFR. The other 14 participants completed the sessions in reverse order.In the BFR condition, pneumatic cuffs were applied to the upper arms and inflated to 80% of each participant’s systolic blood pressure to restrict venous return. Both groups performed upper limb ergometry at an intensity of 15 watts for males and 10 watts for females, across three bouts totaling 21 minutes. The postural dual-task required participants to stand on a soft foam and respond to visual target signals by tapping as quickly as possible. Outcome measures included reaction time (ms), number of correct taps, and error rate. Cognitive performance was assessed using the Trail Making Test, recording reaction time (ms). Functional and physiological improvements were quantified as normalized changes: (post-test − pre-test) / pre-test.

    RESULTS AND DISCUSSION
    In the postural dual-task condition, reaction time to the light-tapping task was significantly decreased within both conditions (BFR condition: p < 0.01; control condition: p < 0.01), although the between-condition difference in normalized change was not significant (p = 0.997). Hit number was significantly increased within both conditions (BFR condition: p < 0.01; control condition: p < 0.01), although the between-condition difference in normalized change was not significant (p = 0.382). Regarding tapping accuracy, the BFR condition showed a significant post-intervention improvement (p < 0.01), while the control condition showed a marginally significant change (p = 0.091); however, the between- condition difference in normalized change was not significant (p = 0.348). For center of pressure area (COP_Area), only the BFR condition demonstrated a significant reduction after the intervention (p = 0.01), and the normalized change was significantly greater in the BFR condition compared to the control condition (BFR: −9.44 ± 24.33%; control: 4.22 ± 20.61%; p = 0.004). In the anterior-posterior direction, the root mean square (RMS) of center of pressure sway did not show significant within-condition differences (BFR condition: p = 0.151; control condition: p = 0.523), nor was there a significant between-condition difference (p = 0.207). In the medial-lateral direction, the BFR condition showed a significant within-condition decrease in RMS (−10.15 ± 17.76%, p < 0.01), while the control condition exhibited a significant increase (5.99 ± 13.52%, p = 0.016), with a significant between-condition difference in normalized change (p < 0.001). In terms of cognitive testing, only the control condition showed a significant reduction in completion time on the Trail Making Test Part A (p< 0.01), while the BFR condition did not (p = 0.217). For Part B, both conditions demonstrated significant reductions in completion time (BFR condition: p < 0.01; control condition: p < 0.01), but the between-condition difference in normalized change was not significant (p = 0.668). The difference in completion time between Part B and Part A (TMT-B–A) significantly decreased under both conditions (BFR condition: p= 0.004; control condition: p= 0.002). The standardized difference in reaction time (TMT-B–A) was significantly decreased in the BFR condition compared to the control condition (p= 0.007).

    CONCLUSION
    The findings suggest that upper limb arm ergometry combined with blood flow restriction (BFR) improves postural dual-task performance and Trail Making Test Part B outcomes in older adults. These enhancements may reflect greater flexibility in cognitive resource allocation. Overall, the results support the potential of upper limb BFR exercise to enhance cognitive and dual-task performance, contributing to fall prevention in the aging population.

    摘要 I EXTENDED ABSTRACT III 目錄 VI 表目錄 VIII 圖目錄 IX 第一章、前言 1 1.1 研究背景與動機 1 1.1.1衰老對於認知功能及姿勢雙重作業控制的影響 1 1.1.2血流限制訓練的生理機制與認知功能之潛在關聯 3 1.1.3上肢血流限制訓練的臨床意義 5 1.2 研究目的與動機 6 1.3 研究假設 7 第二章、研究方法 8 2.1研究對象 8 2.2研究設計 9 2.3 實驗步驟及程序 11 2.3.1 前測 11 2.3.2 上臂踏車運動(arm ergometer)介入 13 2.3.3 後測 15 2.4 實驗設備及測驗方法 17 2.6 統計方法 20 第三章、結果 21 3.1 上肢血流限制結合上臂踏車運動對於姿勢雙重作業的影響 21 3.2 上肢血流限制結合上臂踏車運動對於認知測試的影響 25 第四章、討論 27 4.1 上肢血流限制結合上臂踏車運動對於姿勢雙重作業的影響 27 4.2 上肢血流限制結合上臂腳踏車運動對於認知任務的影響 29 4.3 研究限制及未來發展方向 31 第五章、結論 33 參考文獻 34

    1. Bauer, C., Gröger, I., Rupprecht, R., & Gassmann, K. G. (2008). Intrasession reliability of force platform parameters in community-dwelling older adults. Arch Phys Med Rehabil, 89(10), 1977-1982.
    2. Bergersen, L. (2007). Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience, 145(1), 11–19.
    3. Bishop, N. A., Lu, T., & Yankner, B. A. (2010). Neural mechanisms of ageing and cognitive decline. Nature, 464(7288), 529–535.
    4. Boisgontier, M. P., Beets, I. A., Duysens, J., Nieuwboer, A., Krampe, R. T., & Swinnen, S. P. (2013). Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neuroscience & Biobehavioral Reviews, 37(8), 1824–1837.
    5. Burcal, C. J., Drabik, E. C., & Wikstrom, E. A. (2014). The effect of instructions on postural-suprapostural interactions in three working memory tasks. Gait & Posture, 40(2), 310–314.
    6. Carraro, U., Kern, H., Gava, P., Hofer, C., Loefler, S., Gargiulo, P., et al. (2017). Recovery from muscle weakness by exercise and FES: Lessons from Masters, active or sedentary seniors and SCI patients. Aging Clinical and Experimental Research, 29, 579–590.
    7. Chang, Y.-K., Pan, C.-Y., Chen, F.-T., Tsai, C.-L., & Huang, C.-C. (2012). Effect of resistance-exercise training on cognitive function in healthy older adults: A review. Journal of Aging and Physical Activity, 20(4), 497–517.
    8. Chandley, M. J., & Ordway, G. A. (2012). Noradrenergic dysfunction in depression and suicide. In Y. Dwivedi (Ed.), The neurobiological basis of suicide (Chapter 3). CRC Press/Taylor & Francis.
    9. Chen, Y.-C., Lo, I.-P., Tsai, Y.-Y., Zhao, C.-G., & Hwang, I.-S. (2024). Dual-task improvement of older adults after treadmill walking combined with blood flow restriction of low occlusion pressure: The effect on the heart-brain axis. Journal of NeuroEngineering and Rehabilitation, 21(1), 116.
    10. Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotoninergic regulation of emotional and behavioral control processes. Trends in Cognitive Sciences, 12(1), 31–40.
    11. Dreher, J.-C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences, 105(39), 15106–15111.
    12. Fatela, P., Mendonça, G. V., Veloso, A. P., Avela, J., & Mil-Homens, P. (2019). Blood flow restriction alters motor unit behavior during resistance exercise. International Journal of Sports Medicine, 40(9), 555–562.
    13. Ferrucci, L., Baroni, M., Ranchelli, A., Lauretani, F., Maggio, M., Mecocci, P., et al. (2014). Interaction between bone and muscle in older persons with mobility limitations. Current Pharmaceutical Design, 20, 3178–3197.
    14. Floyer-Lea, A., & Matthews, P. M. (2004). Changing brain networks for visuomotor control with increased movement automaticity. Journal of Neurophysiology, 92(4), 2405–2412.
    15. Greenwood, P. M. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6(6), 705–726.
    16. Hadjistavropoulos, T., Carleton, R. N., Delbaere, K., Barden, J., Zwakhalen, S., Fitzgerald, B., Ghandehari, O. O., & Hadjistavropoulos, H. (2012). The relationship of fear of falling and balance confidence with balance and dual tasking performance. Psychology and Aging, 27(1), 1–10.
    17. Haydock, D., Kadir, S., Leech, R., Nehaniv, C. L., & Antonova, E. (2025). EEG microstate syntax analysis: A review of methodological challenges and advances. NeuroImage, 309, 121090.
    18. Hsiao, H., et al. (2022). The specificity of cognitive-motor dual-task interference on balance in young and older adults. Frontiers in Aging Neuroscience, 14, 878690.
    19. Huang, H. J., & Mercer, V. S. (2001). Dual-task methodology: Applications in studies of cognitive and motor performance in adults and children. Pediatric Physical Therapy, 13(3), 133–140.
    20. Jahn, K. (2019). The aging vestibular system: Dizziness and imbalance in the elderly. Advances in Otorhinolaryngology, 82, 143–149.
    21. Janina, M. P., Stoffregen, T. A., & Duarte, M. (2007). Postural sway during dual tasks in young and elderly adults. Gerontology, 53(5), 274–281.
    22. Jehu, D. A., Desponts, A., Paquet, N., & Lajoie, Y. (2015). Prioritizing attention on a reaction time task improves postural control and reaction time. International Journal of Neuroscience, 125(2), 100–106.
    23. Jia, B., Lv, C., Li, D., & Lv, W. (2024). Cerebral cortex activation and functional connectivity during low-load resistance training with blood flow restriction: An fNIRS study. PLoS ONE, 19(5), e0298762.
    24. Johansson, J., Jarocka, E., Westling, G., Nordström, A., & Nordström, P. (2019). Predicting incident falls: Relationship between postural sway and limits of stability in older adults. Human Movement Science, 66, 117–123.
    25. Kanko, R. M., Laende, E. K., Strutzenberger, G., Brown, M., Selbie, W. S., DePaul, V., et al. (2021). Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. Journal of Biomechanics, 122, 110414.
    26. Karabulut, M., Abe, T., Sato, Y., & Bemben, M. G. (2010). The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. European journal of applied physiology, 108(1), 147–155.
    27. Kilgas, M. A., Yoon, T., McDaniel, J., Phillips, K. C., & Elmer, S. J. (2022). Physiological responses to acute cycling with blood flow restriction. Frontiers in Physiology, 13, 800155.
    28. Kirchhoff, B. A., Gordon, B. A., & Head, D. (2014). Prefrontal gray matter volume mediates age effects on memory strategies. NeuroImage, 90, 326–334.
    29. Laurence, B. D., & Michel, L. (2017). The fall in older adults: Physical and cognitive problems. Current Aging Science, 10(3), 185–200.
    30. Lee, C. H., & Sun, T. L. (2018). Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. Journal of physiological anthropology, 37(1), 27.
    31. Li, K. Z. H., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2002). Walking while memorizing: Age-related differences in compensatory behavior. Neuroscience & Biobehavioral Reviews, 26(7), 777–783.
    32. Li, W., Wang, B., Yuan, H., et al. (2024). Effects of acute aerobic exercise on resting state functional connectivity of motor cortex in college students. Scientific Reports, 14, 14837.
    33. Lindberg, O., Westman, E., Karlsson, S., Ostberg, P., Svensson, L. A., Simmons, A., & Wahlund, L. O. (2012). Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer's disease and frontotemporal lobar degeneration? Frontiers in Aging Neuroscience, 4, 32.
    34. Liu, J., Min, L., Liu, R., et al. (2023). The effect of exercise on cerebral blood flow and executive function among young adults: A double-blinded randomized controlled trial. Scientific Reports, 13, 8269.
    35. McDowd, J. M., & Shaw, R. J. (2000). Attention and aging: A functional perspective. Handbook of Aging and Cognition.
    36. Miskin, N., Thesen, T., Barr, W. B., Butler, T., Wang, X., Dugan, P., Kuzniecky, R., Doyle, W., Devinsky, O., & Blackmon, K. (2016). Prefrontal lobe structural integrity and trail making test, part B: Converging findings from surface-based cortical thickness and voxel-based lesion symptom analyses. Brain Imaging and Behavior, 10(3), 675–685.
    37. Mitra, S., & Fraizer, E. V. (2004). Effects of explicit sway-minimization on postural-suprapostural dual-task performance. Human Movement Science, 23(1), 1–20.
    38. O’Connell, C., Mahboobin, A., Drexler, S., Redfern, M. S., Perera, S., Nau, A. C., et al. (2017). Effects of acute peripheral/central visual field loss on standing balance. Experimental Brain Research, 235, 3261–3270.
    39. Patima, S., Siu, K.-C., Shumway-Cook, A., & Woollacott, M. H. (2006). Training of balance under single- and dual-task conditions in older adults with balance impairment. Physical Therapy, 86(2), 269–281.
    40. Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences, 91(22), 10625–10629.
    41. Peter, R., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062–1069.
    42. Piitulainen, H., Seipajärvi, S., Avela, J., Parviainen, T., & Walker, S. (2018). Cortical proprioceptive processing is altered by aging. Frontiers in Aging Neuroscience, 10, 147.
    43. Prado, J. M., Stoffregen, T. A., & Duarte, M. (2007). Postural sway during dual tasks in young and elderly adults. Gerontology, 53(5), 274–281.
    44. Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062–1069.
    45. Richer, N., & Lajoie, Y. (2020). Automaticity of postural control while dual-tasking revealed in young and older adults. Experimental Aging Research, 46(1), 1–21.
    46. Sánchez-Cubillo, I., Periáñez, J. A., Adrover-Roig, D., Rodríguez-Sánchez, J. M., Ríos-Lago, M., Tirapu, J., & Barceló, F. (2009). Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438–450.
    47. Sapmaz, M., & Mujdeci, B. (2021). The effect of fear of falling on balance and dual task performance in the elderly. Experimental Gerontology, 147, 111250.
    48. Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240(4857), 1326–1328.
    49. Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(4), M232–M240.
    50. Silsupadol, P., Siu, K.-C., Shumway-Cook, A., & Woollacott, M. H. (2006). Training of balance under single- and dual-task conditions in older adults with balance impairment. Physical Therapy, 86(2), 269–281.
    51. Sugimoto, T., Suga, T., Tomoo, K., Dora, K., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021). Blood flow restriction improves executive function after walking. Medicine & Science in Sports & Exercise, 53(1), 131–138.
    52. Thiebaud, R. S., Loenneke, J. P., Fahs, C. A., Rossow, L. M., Kim, D., Abe, T., Anderson, M. A., Young, K. C., Bemben, D. A., & Bemben, M. G. (2013). The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clinical Physiology and Functional Imaging, 33(5), 344–352.
    53. Törpel, A., Herold, F., Hamacher, D., Müller, N. G., & Schega, L. (2018). Strengthening the brain—Is resistance training with blood flow restriction an effective strategy for cognitive improvement? Journal of Clinical Medicine, 7(10), 337.
    54. Tsai, C. L., Chen, Z. R., Chia, P. S., Pan, C. Y., Tseng, Y. T., & Chen, W. C. (2024). Acute resistance exercise combined with whole body vibration and blood flow restriction: Molecular and neurocognitive effects in late-middle-aged and older adults. Experimental gerontology, 192, 112450.
    55. Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20(10), 2580–2590.
    56. Wang, C. W., Yeh, J. L., Li, S. F., Chen, C. M., Wang, H. H., He, C. S., & Lin, H. T. (2024). Functional Fitness Norms of Community-Dwelling Older Adults in Southern Rural Taiwan: A Cross-Sectional Study. Healthcare (Basel, Switzerland), 12(2), 213.
    57. Ward, N., Menta, A., Ulichney, V., Raileanu, C., Wooten, T., Hussey, E. K., & Marfeo, E. (2022). The specificity of cognitive-motor dual-task interference on balance in young and older adults. Frontiers in Aging Neuroscience, 13, 804936.
    58. Won, E., & Kim, Y. K. (2020). Neuroinflammation-Associated Alterations of the Brain as Potential Neural Biomarkers in Anxiety Disorders. International journal of molecular sciences, 21(18), 6546.
    59. Yamada, Y., Kataoka, R., Bell, Z. W., Wong, V., Spitz, R. W., Song, J. S., Abe, T., & Loenneke, J. P. (2023). Improved interference control after exercise with blood flow restriction and cooling is associated with but not mediated by increased lactate. Physiology & Behavior, 270, 114291.
    60. Yasuda, T., Fukumura, K., Uchida, Y., Koshi, H., Iida, H., Masamune, K., Yamasoba, T., Sato, Y., & Nakajima, T. (2015). Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 70(8), 950–958.
    61. Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329–342.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE