簡易檢索 / 詳目顯示

研究生: 廖芳緯
Liao, Fang-Wei
論文名稱: 組蛋白質去甲基酶抑制劑降低Epstein-Barr病毒的再活化以及登革病毒的感染
A histone demethylase inhibitor reduces Epstein-Barr virus reactivation and dengue virus infection
指導教授: 張堯
Chang, Yao
余佳益
Yu, Chia-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 92
中文關鍵詞: 組蛋白質去甲基酶EB病毒再活化Rta登革病毒病毒轉譯
外文關鍵詞: histone demethylase, EBV reactivation, Rta, DENV, viral translation
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阻止EB病毒再活化進入裂解期,有利於預防或治療EB病毒相關的疾病。我們最近發現當EB病毒進入裂解期時,病毒裂解期基因啟動子上的H3組蛋白質9號離胺酸(H3K9)的抑制型甲基化修飾減少了,這支持了過去認為表觀基因(epigenetic)調控的組蛋白質甲基化修飾可能控制著EB病毒的再活化。根據這個線索,我們推測負責移除H3K9上甲基化修飾的組蛋白質去甲基酶JMJD2,在EB病毒再活化時扮演著重要角色。本研究中,我們首先發現用小干擾RNA降低JMJD2蛋白質表現的情況下,EB病毒裂解期蛋白質的表現量會明顯減少。進一步地,用JMJD2的抑制劑ML324的處理細胞會降低EB病毒的裂解期基因表現、病毒DNA的增殖、以及病毒顆粒的產生。值得注意的是,ML324偏好阻止EB病毒 Rta蛋白質所誘導的病毒再活化,但是對另一個即早期病毒蛋白質Zta所誘導的再活化則無效。我們進而發現一些Rta調控的病毒或宿主基因,其表現量也會受到ML324的抑制。ML324也能抑制EB病毒Rta蛋白質誘發卡波西氏肉瘤皰疹病毒(另一種人類腫瘤皰疹病毒)再活化的能力,暗示JMJD2參與許多EB病毒Rta所誘導的現象之中。另一方面,我們也意外發現ML324能抑制登革病毒的感染,並且減少其病毒顆粒的產生。此抑制現象可能是透過抑制登革病毒的轉譯機制。我們的研究成果顯示以JMJD2為標的的表觀基因藥物具有潛力應用於對抗DNA與RNA病毒。

    Blockage of Epstein-Barr virus (EBV) reactivation into the lytic cycle benefits prevention or therapy of EBV-associated diseases. Supporting that epigenetic histone modification may control EBV reactivation, we recently found that suppressive methylation of histone H3 lysine 9 (H3K9) on the viral lytic promoters is alleviated in the lytic state. Following this clue, we speculated that JMJD2, a histone demethylase family removing the methyl group from H3K9, plays a critical role in EBV reactivation. In this study, we first showed that induction of lytic EBV proteins was reduced upon knockdown of JMJD2. Consistently, treatment with a JMJD2 inhibitor ML324 reduced lytic gene expression, viral DNA amplification, and virion production of EBV. Notably, ML324 preferentially blocked EBV reactivation induced by a viral lytic transactivator Rta rather than another immediate-early viral protein Zta. We further identified some Rta-targeted viral and cellular genes of which induction was suppressed by ML324. ML324 also inhibited Rta-induced reactivation of another oncogenic human herpesvirus, Kaposi’s sarcoma-associated herpesvirus, suggesting that JMJD2 is involved in many Rta-regulated effects. On the other hand, we surprisingly found an inhibitory effect of ML324 on dengue virus infection and its virion production, probably at a step of viral RNA translation. Our data highlight the potential application of JMJD2-targeted epi-pharmaceuticals to both DNA and RNA viruses.

    中文摘要 I ABSTRACT II ACKNOWLEDGMENT III CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX LIST OF APPENDECIS XI ABBREVIATION XII INTRODUCTION 1 JMJD2, a lysine demethylase family 1 Epstein-Barr virus and its life cycle 2 EBV lytic transactivator Rta 5 Association of EBV reactivation with human diseases 6 Epigenetic regulation of EBV reactivation 7 Dengue virus and its life cycle 8 Diseases caused by DENV 10 Host factors contributing to DENV infection 11 DENV translation and its regulation 12 Rationales and specific aims 13 MATERIALS AND METHODS 15 Cell culture, drug treatment, EBV reactivation, and DENV infection 15 Plasmids and siRNAs 16 Preparation of plasmids 17 Transfection with DNA and siRNA 18 Cell viability and cytotoxicity assays 18 Immunoblotting assay 19 RNA extraction 19 Quantitative reverse transcription (RT)-PCR 20 Quantification of intracellular copy numbers of EBV and KSHV genomes 21 Quantification of EBV titers by Raji superinfection and flow cytometry 21 Gelatin zymography 22 Chromatin Immunoprecipitation (ChIP) assay 22 DENV plaque assay 24 Luciferase assay 24 RESULTS 25 JMJD2 proteins are involved in EBV reactivation 25 ML324 inhibits EBV reactivation, especially that induced by Rta. 26 ML324 inhibits viral gene expression during Rta-driven EBV reactivation 28 ML324 reduces EBV DNA replication and virion production 28 ML324 decreases Rta-induced cellular gene expression 29 ML324 inhibits Rta-induced KSHV reactivation 30 ML324 inhibits DENV infection 31 ML324 reduces DENV production 31 ML324 inhibits DENV infection probably at the viral RNA translation level 32 DISCUSSION 34 ML324 reduces EBV reactivation and DENV infection 34 ML324-mediated inhibition of EBV gene expression potentially through regulation of histone methylation 35 Possible links between EBV Rta and JMJD2 36 Exceptional examples of ML324’s effects on gamma-herpesviruses 37 Additional experiments required to confirm ML324’s effects on DENV 39 Possible mechanisms of ML324-mediated inhibition of DENV translation 40 Other possible effects of ML324 on DENV infection 41 Applications of ML324 or other JMJD2 inhibitors 42 REFERENCES 45 TABLES 64 FIGURES 67 APPENDICES 87 CURRICULUM VITAE 92

    Acosta, E.G., Castilla, V., and Damonte, E.B. (2008). Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89, 474-484.
    Alvarez, D.E., De Lella Ezcurra, A.L., Fucito, S., and Gamarnik, A.V. (2005). Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200-212.
    Alvarez, D.E., Filomatori, C.V., and Gamarnik, A.V. (2008). Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs. Virology 375, 223-235.
    Babcock, G.J., Hochberg, D., and Thorley-Lawson, A.D. (2000). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497-506.
    Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
    Balmaseda, A., Hammond, S.N., Perez, L., Tellez, Y., Saborio, S.I., Mercado, J.C., Cuadra, R., Rocha, J., Perez, M.A., Silva, S., et al. (2006). Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74, 449-456.
    Balsitis, S.J., Williams, K.L., Lachica, R., Flores, D., Kyle, J.L., Mehlhop, E., Johnson, S., Diamond, M.S., Beatty, P.R., and Harris, E. (2010). Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6, e1000790.
    Bastos-Amador, P., Royo, F., Gonzalez, E., Conde-Vancells, J., Palomo-Diez, L., Borras, F.E., and Falcon-Perez, J.M. (2012). Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability. J Proteomics 75, 3574-3584.
    Baumann, M., Mischak, H., Dammeier, S., Kolch, W., Gires, O., Pich, D., Zeidler, R., Delecluse, H.J., and Hammerschmidt, W. (1998). Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 72, 8105-8114.
    Berry, W.L., and Janknecht, R. (2013). KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73, 2936-2942.
    Berry, W.L., Shin, S., Lightfoot, S.A., and Janknecht, R. (2012). Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 41, 1701-1706.
    Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504-507.
    Bhende, P.M., Seaman, W.T., Delecluse, H.J., and Kenney, S.C. (2004). The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36, 1099-1104.
    Bouvier, G., Poirier, S., Shao, Y.M., Malaveille, C., Ohshima, H., Polack, A., Bornkamm, G.W., Zeng, Y., de-The, G., and Bartsch, H. (1991). Epstein-Barr virus activators, mutagens and volatile nitrosamines in preserved food samples from high-risk areas for nasopharyngeal carcinoma. IARC Sci Publ, 204-209.
    Cabras, G., Decaussin, G., Zeng, Y., Djennaoui, D., Melouli, H., Broully, P., Bouguermouh, A.M., and Ooka, T. (2005). Epstein-Barr virus encoded BALF1 gene is transcribed in Burkitt's lymphoma cell lines and in nasopharyngeal carcinoma's biopsies. J Clin Virol 34, 26-34.
    Carroll, V.A., and Ashcroft, M. (2008). Regulation of angiogenic factors by HDM2 in renal cell carcinoma. Cancer Res 68, 545-552.
    Chambers, J.W., Maguire, T.G., and Alwine, J.C. (2010). Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84, 1867-1873.
    Chan, A.T., Lo, Y.M., Zee, B., Chan, L.Y., Ma, B.B., Leung, S.F., Mo, F., Lai, M., Ho, S., Huang, D.P., et al. (2002). Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 94, 1614-1619.
    Chang, F.-H. Epstein-Barr病毒溶裂期蛋白質Rta誘發細胞侵襲和基質金屬蛋白酶九的表現.
    Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539.
    Chang, L.K., and Liu, S.T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-3925.
    Chang, L.S., Wang, J.T., Doong, S.L., Lee, C.P., Chang, C.W., Tsai, C.H., Yeh, S.W., Hsieh, C.Y., and Chen, M.R. (2012). Epstein-Barr virus BGLF4 kinase downregulates NF-kappaB transactivation through phosphorylation of coactivator UXT. J Virol 86, 12176-12186.
    Chang, P.C., Fitzgerald, L.D., Hsia, D.A., Izumiya, Y., Wu, C.Y., Hsieh, W.P., Lin, S.F., Campbell, M., Lam, K.S., Luciw, P.A., et al. (2011). Histone demethylase JMJD2A regulates Kaposi's sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol 85, 3283-3293.
    Chang, Y., Chang, S.S., Lee, H.H., Doong, S.L., Takada, K., and Tsai, C.H. (2004a). Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371-1379.
    Chang, Y., Chang, S.S., Lee, H.H., Doong, S.L., Takada, K., and Tsai, C.H. (2004b). Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371-1379.
    Chang, Y., Lee, H.H., Chang, S.S., Hsu, T.Y., Wang, P.W., Chang, Y.S., Takada, K., and Tsai, C.H. (2004c). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036.
    Chau, T.N., Quyen, N.T., Thuy, T.T., Tuan, N.M., Hoang, D.M., Dung, N.T., Lien le, B., Quy, N.T., Hieu, N.T., Hieu, L.T., et al. (2008). Dengue in Vietnamese infants--results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis 198, 516-524.
    Chen, J.Y., Hwang, L.Y., Beasley, R.P., Chien, C.S., and Yang, C.S. (1985). Antibody response to Epstein-Barr-virus-specific DNase in 13 patients with nasopharyngeal carcinoma in Taiwan: a retrospective study. J Med Virol 16, 99-105.
    Chen, X., Qiu, J., Yang, D., Lu, J., Yan, C., Zha, X., and Yin, Y. (2013). MDM2 promotes invasion and metastasis in invasive ductal breast carcinoma by inducing matrix metalloproteinase-9. PLoS One 8, e78794.
    Chen, Y.J., Tsai, W.H., Chen, Y.L., Ko, Y.C., Chou, S.P., Chen, J.Y., and Lin, S.F. (2011). Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells. PLoS One 6, e17809.
    Chen, Y.L., Chen, Y.J., Tsai, W.H., Ko, Y.C., Chen, J.Y., and Lin, S.F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65.
    Chen, Y.R., Liu, M.T., Chang, Y.T., Wu, C.C., Hu, C.Y., and Chen, J.Y. (2008). Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 82, 8124-8137.
    Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.G., Simpson, M., Mao, Q., Pan, C.H., Dai, S., et al. (2006). Structural insights into histone demethylation by JMJD2 family members. Cell 125, 691-702.
    Chien, Y.C., Chen, J.Y., Liu, M.Y., Yang, H.I., Hsu, M.M., Chen, C.J., and Yang, C.S. (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-1882.
    Chiu, W.W., Kinney, R.M., and Dreher, T.W. (2005). Control of translation by the 5'- and 3'-terminal regions of the dengue virus genome. J Virol 79, 8303-8315.
    Chu, C.H., Wang, L.Y., Hsu, K.C., Chen, C.C., Cheng, H.H., Wang, S.M., Wu, C.M., Chen, T.J., Li, L.T., Liu, R., et al. (2014). KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem 57, 5975-5985.
    Cleaves, G.R., and Dubin, D.T. (1979). Methylation status of intracellular dengue type 2 40 S RNA. Virology 96, 159-165.
    Cleaves, G.R., Ryan, T.E., and Schlesinger, R.W. (1981). Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111, 73-83.
    Cochet, C., Martel-Renoir, D., Grunewald, V., Bosq, J., Cochet, G., Schwaab, G., Bernaudin, J.F., and Joab, I. (1993). Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197, 358-365.
    Colpitts, T.M., Barthel, S., Wang, P., and Fikrig, E. (2011). Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One 6, e24365.
    Dawson, C.W., Port, R.J., and Young, L.S. (2012). The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 22, 144-153.
    de-Vathaire, F., Sancho-Garnier, H., de-The, H., Pieddeloup, C., Schwaab, G., Ho, J.H., Ellouz, R., Micheau, C., Cammoun, M., Cachin, Y., et al. (1988). Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int J Cancer 42, 176-181.
    Deng, H., Zeng, Y., Lei, Y., Zhao, Z., Wang, P., Li, B., Pi, Z., Tan, B., Zheng, Y., Pan, W., et al. (1995). Serological survey of nasopharyngeal carcinoma in 21 cities of south China. Chin Med J (Engl) 108, 300-303.
    Duan, L., Rai, G., Roggero, C., Zhang, Q.J., Wei, Q., Ma, S.H., Zhou, Y., Santoyo, J., Martinez, E.D., Xiao, G., et al. (2015). KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the expression of AR and BMYB-regulated genes. Chem Biol 22, 1185-1196.
    Duan, X., Lu, X., Li, J., and Liu, Y. (2008). Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373, 319-324.
    Dunphy, J.T., and Linder, M.E. (1998). Signalling functions of protein palmitoylation. Biochim Biophys Acta 1436, 245-261.
    Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-174.
    Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964). Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1, 702-703.
    Faggioni, A., Zompetta, C., Grimaldi, S., Barile, G., Frati, L., and Lazdins, J. (1986). Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232, 1554-1556.
    Fang, C.Y., Lee, C.H., Wu, C.C., Chang, Y.T., Yu, S.L., Chou, S.P., Huang, P.T., Chen, C.L., Hou, J.W., Chang, Y., et al. (2009). Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 124, 2016-2025.
    Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., and Delecluse, H.J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo j 19, 3080-3089.
    Feng, P., Ren, E.C., Liu, D., Chan, S.H., and Hu, H. (2000). Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 81, 2417-2423.
    Feng, W.H., Hong, G., Delecluse, H.J., and Kenney, S.C. (2004). Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78, 1893-1902.
    Fernandez-Garcia, M.D., Meertens, L., Bonazzi, M., Cossart, P., Arenzana-Seisdedos, F., and Amara, A. (2011). Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J Virol 85, 2980-2989.
    Fingeroth, J.D., Weis, J.J., Tedder, T.F., Strominger, J.L., Biro, P.A., and Fearon, D.T. (1984). Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81, 4510-4514.
    Fixman, E.D., Hayward, G.S., and Hayward, S.D. (1992). Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-5039.
    Fontaine, K.A., Camarda, R., and Lagunoff, M. (2014). Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88, 4366-4374.
    Given, D., and Kieff, E. (1979). DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31, 315-324.
    Gorres, K.L., Daigle, D., Mohanram, S., and Miller, G. (2014). Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 88, 8028-8044.
    Gruffat, H., Manet, E., Rigolet, A., and Sergeant, A. (1990). The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18, 6835-6843.
    Hahn, C.S., Hahn, Y.S., Rice, C.M., Lee, E., Dalgarno, L., Strauss, E.G., and Strauss, J.H. (1987). Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33-41.
    Hahn, Y.S., Galler, R., Hunkapiller, T., Dalrymple, J.M., Strauss, J.H., and Strauss, E.G. (1988). Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162, 167-180.
    Halstead, S.B., and O'Rourke, E.J. (1977a). Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739-741.
    Halstead, S.B., and O'Rourke, E.J. (1977b). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146, 201-217.
    Hardwick, J.M., Lieberman, P.M., and Hayward, S.D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-2284.
    Heilmann, A.M., Calderwood, M.A., Portal, D., Lu, Y., and Johannsen, E. (2012). Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164.
    Hillringhaus, L., Yue, W.W., Rose, N.R., Ng, S.S., Gileadi, C., Loenarz, C., Bello, S.H., Bray, J.E., Schofield, C.J., and Oppermann, U. (2011). Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem 286, 41616-41625.
    Holden, K.L., and Harris, E. (2004). Enhancement of dengue virus translation: role of the 3' untranslated region and the terminal 3' stem-loop domain. Virology 329, 119-133.
    Holley-Guthrie, E.A., Quinlivan, E.B., Mar, E.C., and Kenney, S. (1990). The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64, 3753-3759.
    Hotta, H., Wiharta, A.S., Hotta, S., and Homma, M. (1984). Dengue type 2 virus infection in human peripheral blood monocyte cultures. Microbiol Immunol 28, 1099-1109.
    Hsieh, C.-T. Epstein-Barr病毒再活化時Rta下調組蛋白甲基轉移酶的表現.
    Hsu, T.Y., Chang, Y., Wang, P.W., Liu, M.Y., Chen, M.R., Chen, J.Y., and Tsai, C.H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322.
    Huang, S.Y., Fang, C.Y., Tsai, C.H., Chang, Y., Takada, K., Hsu, T.Y., and Chen, J.Y. (2010). N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein-Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. Chem Biol Interact 188, 623-634.
    Huang, S.Y., Fang, C.Y., Wu, C.C., Tsai, C.H., Lin, S.F., and Chen, J.Y. (2013). Reactive oxygen species mediate Epstein-Barr virus reactivation by N-methyl-N'-nitro-N-nitrosoguanidine. PLoS One 8, e84919.
    Huang, S.Y., Hsieh, M.J., Chen, C.Y., Chen, Y.J., Chen, J.Y., Chen, M.R., Tsai, C.H., Lin, S.F., and Hsu, T.Y. (2012). Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3sigma arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 93, 139-149.
    Imai, K., Kamio, N., Cueno, M.E., Saito, Y., Inoue, H., Saito, I., and Ochiai, K. (2014). Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells. Febs j 281, 2148-2158.
    Kanlaya, R., Pattanakitsakul, S.N., Sinchaikul, S., Chen, S.T., and Thongboonkerd, V. (2010). The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res 9, 4960-4971.
    Katoh, M., and Katoh, M. (2004). Identification and characterization of JMJD2 family genes in silico. Int J Oncol 24, 1623-1628.
    Kawazu, M., Saso, K., Tong, K.I., McQuire, T., Goto, K., Son, D.O., Wakeham, A., Miyagishi, M., Mak, T.W., and Okada, H. (2011). Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One 6, e17830.
    King, O.N., Li, X.S., Sakurai, M., Kawamura, A., Rose, N.R., Ng, S.S., Quinn, A.M., Rai, G., Mott, B.T., Beswick, P., et al. (2010). Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One 5, e15535.
    Kliks, S.C., Nisalak, A., Brandt, W.E., Wahl, L., and Burke, D.S. (1989). Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40, 444-451.
    Klose, R.J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. (2006). The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312-316.
    Ko, Y.C. (1989). Epidemiology of dengue fever in Taiwan. Gaoxiong Yi Xue Ke Xue Za Zhi 5, 1-11.
    Kozlov, G., Safaee, N., Rosenauer, A., and Gehring, K. (2010). Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem 285, 13599-13606.
    Kroetz, D.N., Allen, R.M., Schaller, M.A., Cavallaro, C., Ito, T., and Kunkel, S.L. (2015). Type I interferon induced epigenetic regulation of macrophages suppresses innate and adaptive immunity in acute respiratory viral infection. PLoS Pathog 11, e1005338.
    Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725.
    Kuno, G., Chang, G.J., Tsuchiya, K.R., Karabatsos, N., and Cropp, C.B. (1998). Phylogeny of the genus Flavivirus. J Virol 72, 73-83.
    Kuo, C.H., Tai, D.I., Chang-Chien, C.S., Lan, C.K., Chiou, S.S., and Liaw, Y.F. (1992). Liver biochemical tests and dengue fever. Am J Trop Med Hyg 47, 265-270.
    Lan, Y.Y., Hsiao, J.R., Chang, K.C., Chang, J.S., Chen, C.W., Lai, H.C., Wu, S.Y., Yeh, T.H., Chang, F.H., Lin, W.H., et al. (2012). Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 86, 6656-6667.
    Lan, Y.Y., Yeh, T.H., Lin, W.H., Wu, S.Y., Lai, H.C., Chang, F.H., Takada, K., and Chang, Y. (2013). Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One 8, e56121.
    Lee, C.J., Liao, C.L., and Lin, Y.L. (2005). Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79, 8388-8399.
    Lei, K.I., Chan, L.Y., Chan, W.Y., Johnson, P.J., and Lo, Y.M. (2000). Quantitative analysis of circulating cell-free Epstein-Barr virus (EBV) DNA levels in patients with EBV-associated lymphoid malignancies. Br J Haematol 111, 239-246.
    Li, H.P., and Chang, Y.S. (2003). Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504.
    Li, Q., Spriggs, M.K., Kovats, S., Turk, S.M., Comeau, M.R., Nepom, B., and Hutt-Fletcher, L.M. (1997). Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71, 4657-4662.
    Li, Y., Mahajan, N.P., Webster-Cyriaque, J., Bhende, P., Hong, G.K., Earp, H.S., and Kenney, S. (2004a). The C-mer gene is induced by Epstein-Barr virus immediate-early protein BRLF1. J Virol 78, 11778-11785.
    Li, Y., Webster-Cyriaque, J., Tomlinson, C.C., Yohe, M., and Kenney, S. (2004b). Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 78, 4197-4206.
    Liang, Y., Vogel, J.L., Arbuckle, J.H., Rai, G., Jadhav, A., Simeonov, A., Maloney, D.J., and Kristie, T.M. (2013). Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency. Sci Transl Med 5, 167-165.
    Lin, J.C., Chen, K.Y., Wang, W.Y., Jan, J.S., Liang, W.M., Tsai, C.S., and Wei, Y.H. (2001). Detection of Epstein-Barr virus DNA in the peripheral-blood cells of patients with nasopharyngeal carcinoma: relationship to distant metastasis and survival. J Clin Oncol 19, 2607-2615.
    Lin, T.Y., Chu, Y.Y., Yang, Y.C., Hsu, S.W., Liu, S.T., and Chang, L.K. (2014). MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 9, e90698.
    Lin, Y.L., Liao, C.L., Chen, L.K., Yeh, C.T., Liu, C.I., Ma, S.H., Huang, Y.Y., Huang, Y.L., Kao, C.L., and King, C.C. (1998). Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72, 9729-9737.
    Lin, Y.L., Liu, C.C., Lei, H.Y., Yeh, T.M., Lin, Y.S., Chen, R.M., and Liu, H.S. (2000). Infection of five human liver cell lines by dengue-2 virus. J Med Virol 60, 425-431.
    Linger, R.M., Cohen, R.A., Cummings, C.T., Sather, S., Migdall-Wilson, J., Middleton, D.H., Lu, X., Baron, A.E., Franklin, W.A., Merrick, D.T., et al. (2013). Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32, 3420-3431.
    Littaua, R., Kurane, I., and Ennis, F.A. (1990). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 144, 3183-3186.
    Liu, M.T., Chen, Y.R., Chen, S.C., Hu, C.Y., Lin, C.S., Chang, Y.T., Wang, W.B., and Chen, J.Y. (2004). Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23, 2531-2539.
    Lo, Y.M., Chan, L.Y., Lo, K.W., Leung, S.F., Zhang, J., Chan, A.T., Lee, J.C., Hjelm, N.M., Johnson, P.J., and Huang, D.P. (1999). Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59, 1188-1191.
    Luka, J., Kallin, B., and Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231.
    Maguire, M., Nield, P.C., Devling, T., Jenkins, R.E., Park, B.K., Polanski, R., Vlatkovic, N., and Boyd, M.T. (2008). MDM2 regulates dihydrofolate reductase activity through monoubiquitination. Cancer Res 68, 3232-3242.
    Martel-Renoir, D., Grunewald, V., Touitou, R., Schwaab, G., and Joab, I. (1995). Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol 76 ( Pt 6), 1401-1408.
    Mutirangura, A., Pornthanakasem, W., Theamboonlers, A., Sriuranpong, V., Lertsanguansinchi, P., Yenrudi, S., Voravud, N., Supiyaphun, P., and Poovorawan, Y. (1998). Epstein-Barr viral DNA in serum of patients with nasopharyngeal carcinoma. Clin Cancer Res 4, 665-669.
    Nasirudeen, A.M., Wong, H.H., Thien, P., Xu, S., Lam, K.P., and Liu, D.X. (2011). RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5, e926.
    Niederman, J.C., McCollum, R.W., Henle, G., and Henle, W. (1968). Infectious mononucleosis. Clinical manifestations in relation to EB virus antibodies. Jama 203, 205-209.
    Normile, D. (2013). Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science 342, 415.
    Paranjape, S.M., and Harris, E. (2010). Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338, 15-34.
    Polacek, C., Friebe, P., and Harris, E. (2009). Poly(A)-binding protein binds to the non-polyadenylated 3' untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90, 687-692.
    Ponnaluri, V.K., Vavilala, D.T., Putty, S., Gutheil, W.G., and Mukherji, M. (2009). Identification of non-histone substrates for JMJD2A-C histone demethylases. Biochem Biophys Res Commun 390, 280-284.
    Quinlivan, E.B., Holley-Guthrie, E.A., Norris, M., Gutsch, D., Bachenheimer, S.L., and Kenney, S.C. (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res 21, 1999-2007.
    Rai, G., Kawamura, A., Tumber, A., Liang, Y., Vogel, J.L., Arbuckle, J.H., Rose, N.R., Dexheimer, T.S., Foley, T.L., King, O.N., et al. (2010). Discovery of ML324, a JMJD2 demethylase inhibitor with demonstrated antiviral activity. In Probe Reports from the NIH Molecular Libraries Program (Bethesda (MD): National Center for Biotechnology Information (US)).
    Rodenhuis-Zybert, I.A., Wilschut, J., and Smit, J.M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773-2786.
    Rose, N.R., McDonough, M.A., King, O.N., Kawamura, A., and Schofield, C.J. (2011). Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 40, 4364-4397.
    Rovedo, M., and Longnecker, R. (2007). Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 81, 84-94.
    Rui, L., Emre, N.C., Kruhlak, M.J., Chung, H.J., Steidl, C., Slack, G., Wright, G.W., Lenz, G., Ngo, V.N., Shaffer, A.L., et al. (2010). Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18, 590-605.
    Salifou, K., Ray, S., Verrier, L., Aguirrebengoa, M., Trouche, D., Panov, K.I., and Vandromme, M. (2016). The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat Commun 7, 10174.
    Sangkawibha, N., Rojanasuphot, S., Ahandrik, S., Viriyapongse, S., Jatanasen, S., Salitul, V., Phanthumachinda, B., and Halstead, S.B. (1984). Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120, 653-669.
    Schneider-Poetsch, T., Ju, J., Eyler, D.E., Dang, Y., Bhat, S., Merrick, W.C., Green, R., Shen, B., and Liu, J.O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6, 209-217.
    Sessions, O.M., Barrows, N.J., Souza-Neto, J.A., Robinson, T.J., Hershey, C.L., Rodgers, M.A., Ramirez, J.L., Dimopoulos, G., Yang, P.L., Pearson, J.L., et al. (2009). Discovery of insect and human dengue virus host factors. Nature 458, 1047-1050.
    Shannon-Lowe, C., and Rowe, M. (2011). Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog 7, e1001338.
    Shi, L., Sun, L., Li, Q., Liang, J., Yu, W., Yi, X., Yang, X., Li, Y., Han, X., Zhang, Y., et al. (2011). Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci U S A 108, 7541-7546.
    Shin, S., and Janknecht, R. (2007). Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun 359, 742-746.
    Shurtleff, A.C., Beasley, D.W., Chen, J.J., Ni, H., Suderman, M.T., Wang, H., Xu, R., Wang, E., Weaver, S.C., Watts, D.M., et al. (2001). Genetic variation in the 3' non-coding region of dengue viruses. Virology 281, 75-87.
    Souza, L.J., Alves, J.G., Nogueira, R.M., Gicovate Neto, C., Bastos, D.A., Siqueira, E.W., Souto Filho, J.T., Cezario Tde, A., Soares, C.E., and Carneiro Rda, C. (2004). Aminotransferase changes and acute hepatitis in patients with dengue fever: analysis of 1,585 cases. Braz J Infect Dis 8, 156-163.
    Su, C.I., Tseng, C.H., Yu, C.Y., and Lai, M.M. (2016). SUMO modification stabilizes dengue virus nonstructural protein 5 to support virus replication. J Virol 90, 4308-4319.
    Suksanpaisan, L., Susantad, T., and Smith, D.R. (2009). Characterization of dengue virus entry into HepG2 cells. J Biomed Sci 16, 17.
    Sung, J.M., Lee, C.K., and Wu-Hsieh, B.A. (2012). Intrahepatic infiltrating NK and CD8 T cells cause liver cell death in different phases of dengue virus infection. PLoS One 7, e46292.
    Suzuki, Y., Chin, W.X., Han, Q., Ichiyama, K., Lee, C.H., Eyo, Z.W., Ebina, H., Takahashi, H., Takahashi, C., Tan, B.H., et al. (2016). Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against dengue virus replication. PLoS Pathog 12, e1005357.
    Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32.
    Thai, M., Thaker, S.K., Feng, J., Du, Y., Hu, H., Ting Wu, T., Graeber, T.G., Braas, D., and Christofk, H.R. (2015). MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun 6, 8873.
    Thalhammer, A., Mecinovic, J., Loenarz, C., Tumber, A., Rose, N.R., Heightman, T.D., and Schofield, C.J. (2011). Inhibition of the histone demethylase JMJD2E by 3-substituted pyridine 2,4-dicarboxylates. Org Biomol Chem 9, 127-135.
    Thiemmeca, S., Mahidon, M., and Mahāwitthayālai Mahidon. Khana Phǣtthayasāt, S. (2008). Infection of Dengue Virus to a Megakaryoblastic Cell Line, MEG-01 : a Model to Investigate the Roles of Dengue Virus and Platelets in the Immunopathogenesis of Dengue Hemorrhagic Fever (DHF).
    Trojer, P., Zhang, J., Yonezawa, M., Schmidt, A., Zheng, H., Jenuwein, T., and Reinberg, D. (2009). Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem 284, 8395-8405.
    Turbin, D.A., Cheang, M.C., Bajdik, C.D., Gelmon, K.A., Yorida, E., De Luca, A., Nielsen, T.O., Huntsman, D.G., and Gilks, C.B. (2006). MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol 19, 69-74.
    Umareddy, I., Chao, A., Sampath, A., Gu, F., and Vasudevan, S.G. (2006). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87, 2605-2614.
    van der Schaar, H.M., Rust, M.J., Chen, C., van der Ende-Metselaar, H., Wilschut, J., Zhuang, X., and Smit, J.M. (2008). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4, e1000244.
    Van Rechem, C., Black, J.C., Boukhali, M., Aryee, M.J., Graslund, S., Haas, W., Benes, C.H., and Whetstine, J.R. (2015). Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis. Cancer Discov 5, 255-263.
    Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Raengsakulrach, B., Rothman, A.L., Ennis, F.A., et al. (2000). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181, 2-9.
    Vieira, J., and O'Hearn, P.M. (2004). Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 325, 225-240.
    Wakil, S.J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523-4530.
    Wang, L., Chang, J., Varghese, D., Dellinger, M., Kumar, S., Best, A.M., Ruiz, J., Bruick, R., Pena-Llopis, S., Xu, J., et al. (2013). A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nat Commun 4, 2035.
    Wang, S.F., Chang, K., Lu, R.W., Wang, W.H., Chen, Y.H., Chen, M., Wu, D.C., and Chen, Y.M. (2015). Large Dengue virus type 1 outbreak in Taiwan. Emerg Microbes Infect 4, e46.
    Wang, S.F., Wang, W.H., Chang, K., Chen, Y.H., Tseng, S.P., Yen, C.H., Wu, D.C., and Chen, Y.M. (2016). Severe dengue fever outbreak in Taiwan. Am J Trop Med Hyg 94, 193-197.
    Wei, W.I., Yuen, A.P., Ng, R.W., Ho, W.K., Kwong, D.L., and Sham, J.S. (2004). Quantitative analysis of plasma cell-free Epstein-Barr virus DNA in nasopharyngeal carcinoma after salvage nasopharyngectomy: a prospective study. Head Neck 26, 878-883.
    Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481.
    WHO (2009). WHO guidelines approved by the guidelines review committee. In Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition (Geneva: World Health Organization).
    Wille, C.K., Nawandar, D.M., Panfil, A.R., Ko, M.M., Hagemeier, S.R., and Kenney, S.C. (2013). Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 87, 935-950.
    Wu, C.C., Liu, M.T., Chang, Y.T., Fang, C.Y., Chou, S.P., Liao, H.W., Kuo, K.L., Hsu, S.L., Chen, Y.R., Wang, P.W., et al. (2010). Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 38, 1932-1949.
    You, S., Falgout, B., Markoff, L., and Padmanabhan, R. (2001). In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5'- and 3'-terminal regions that influence RNA structure. J Biol Chem 276, 15581-15591.
    Young, L.C., and Hendzel, M.J. (2013). The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem Cell Biol 91, 369-377.
    Zaitseva, E., Yang, S.T., Melikov, K., Pourmal, S., and Chernomordik, L.V. (2010). Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6, e1001131.
    Zhang, J.X., Chen, H.L., Zong, Y.S., Chan, K.H., Nicholls, J., Middeldorp, J.M., Sham, J.S., Griffin, B.E., and Ng, M.H. (1998). Epstein-Barr virus expression within keratinizing nasopharyngeal carcinoma. J Med Virol 55, 227-233.
    Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., Liu, X., Ren, R., Xu, X., Ocampo, A., et al. (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163.
    Zimmermann, J., and Hammerschmidt, W. (1995). Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J Virol 69, 3147-3155.
    zur Hausen, H., O'Neill, F.J., Freese, U.K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE