簡易檢索 / 詳目顯示

研究生: 賴瑞協
Lai, Ruei-Shei
論文名稱: Sn-8.5Zn-xAg-0.01Al-0.1Ga無鉛銲錫合金與銅基材之潤濕行為與界面反應研究
Studies on wetting behavior and interfacial reaction between Sn-8.Zn-xAg-0.01Al-0.1Ga lead-free solder alloys and Cu substrates
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 78
中文關鍵詞: 無鉛銲錫潤濕反應
外文關鍵詞: Wetting, Lead-free solders
相關次數: 點閱:143下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    銲錫合金在電子構裝中,接合電子元件與基板,因此接合強度是非常重要的性質,而銲錫合金與基材之間的強度,主要是因為銲錫合金與基材間原子的反應生成介金屬化合物,使其產生潤濕的效果,但是若生成過多的介金屬化合物,會使得去潤濕的現象發生,因此必須控制適當的反應溫度、銲錫成份和助熔劑選擇來達成較好的潤濕性,且因為環保議題日趨重要,加速了無鉛銲錫合金的開發。
    本研究採用Sn-8.5Zn-xAg-0.01Al-0.1Ga,x=0、0.1、0.3、0.5、1.0、1.5銲錫合金,探討合金的熱性質,以及利用潤濕天平和接觸角測量儀測量合金與銅基材在不同溫度和配合不同助熔劑的潤濕效果, 並觀察界面經過高溫時效後發生的反應。
    熱差分析儀測量及電子顯微鏡分析結果顯示,添加銀元素,會使得合金組成偏離共晶成份,擴大兩相區範圍,針棒狀富鋅相的錫鋅共晶組織會逐漸減少,且AgZn3介金屬化合物也會逐漸增多。隨著銀含量的增加,在230˚C和240˚C時,潤濕性會逐漸變差,活化能與接觸角逐漸增大;掃描式電子顯微鏡觀察顯示界面組織為層狀Cu5Zn8,增加銀含量,扇貝狀AgZn3介金屬化合物也會增加,抑制銅元素的擴散與反應,降低潤濕性。
    高溫時效反應,會增厚銲錫合金與銅基材間的Cu5Zn8介金屬化合物,但增加銀含量,會降低Cu5Zn8的成長速度,且在120小時之後,層狀Cu5Zn8會逐漸破裂,在Cu5Zn8和銅的界面處會有一層鎵元素析出,到達400小時後,錫元素擴散至銅基材以生成Cu6Sn5,到達900小時後,因為銲錫中的鋅元素漸漸被耗盡,Cu5Zn8的成長會趨於緩慢,但破裂的狀況會更加嚴重,而原本在界面析出的鎵元素,再度固溶回錫基地

    Abstract
    Solder alloys are used to bond electronics devices. As the size of the solder joints becomes smaller and smaller, the mechanical properties and reliability of the solder alloys become extremely important. This bonding is the results in the diffusion and reaction of atoms from solder and substrate side forming intermetallic compound (IMC). Soldering process could be explained starting from when the molten solder fully covered a substrate surface. Too much IMC formed at the interface will make the molten solder difficult to wet the substrate. Hence the soldering process should be controlled so that only limited IMC would form. The better soldering process with different solder alloys will be required at different soldering time and flux. The trend of lead-free issue for environmental protection accelerates the rate of development of lead-free solders.
    The solder alloys used in the study were Sn-8.5Zn-xAg-0.01Al-0.1Ga where “x” indicates silver content in the alloys, x = 0.01, 0.1, 0.3, 0.5, 1 and 1.5. The alloys were initially investigated using Differential Scanning Calorimetry (DSC) to measure their melting temperature. Then the solder alloys were also tested for their solderability using wetting balance and contact angle methods. The microstructure at the interface were observed by SEM and EPMA after the isothermal annealing at 150˚C for 120h, 400h and 900h.
    It was found that the two phase region widen with the addition of silver content because DSC analysis showed that the composition of solder diverges from the eutectic composition. SEM analysis showed the quantity of AgZn3 increased after the silver content increased. This increasing amount of AgZn3 might explain why the viscosity of the studied solder increased with the increasing content of silver.
    The wetting balance test indicated that the wettability between the Cu and solder alloys is reduced by the addition of silver element with the DMAHCL flux at the 230˚C and 240˚C. The activation energy and the contact angle were also found to increase with the increasing silver content. The reason for poor wettability with the higher silver content is that Ag and Cu atoms are competing to react with Zn atom to form AgZn3 and Cu5Zn8 layer IMC. Furthermore, the wettability is depended on the reaction between Cu atom from the substrate and Zn atom from the solder matrix. If more AgZn3 is formed at the interface, it will retard the diffusion rate of Cu and the reaction between Cu and Zn. In this study, the flux DMAHCL demonstrated better performance compared to the flux SZ555 flux.
    The thickness of Cu5Zn8 grows with the aging time at 150˚C but the addition of silver element will slow down the growth of the Cu5Zn8 layer. The Cu5Zn8 IMC layer was broken and a very thin Ga layer segregates at the interface between Cu and Cu5Zn8 IMC after thermal treatment at 120 hours. After 400 hours, the Cu6Sn5 IMC was formed with the Sn diffusing to the Cu substrate. Then the Cu5Zn8 IMC grows slowly due to the depletion of Zn element in the solder matrix but the cracks become obvious. The thin Ga layer which is formed initially disappeared due to the Sn atoms penetrated to the Cu side and then Ga dissolved into Sn matrix after the 900 hours thermal aging.

    總目錄 中文摘要........................................................................................................... I 英文摘要..........................................................................................................II 誌謝.................................................................................................................IV 總目錄.............................................................................................................VI 表目錄..........................................................................................................VIII 圖目錄.............................................................................................................IX 第壹章 簡介.....................................................................................................1 1-1銲錫合金在電子構裝產業上的應用….................................................1 1-2傳統錫鉛銲錫合金之特性.....................................................................1 1-3無鉛銲錫合金的規範.............................................................................2 1-3-1開發無鉛銲錫合金所需的要求......................................................2 1-3-2無鉛銲錫的特性需求......................................................................4 1-3-2-1錫銀系統...................................................................................5 1-3-2-2錫鋅系統...................................................................................5 1-4銲錫合金與銅基材之間的潤濕行為.....................................................6 1-4-1潤濕天平試驗的原理....................................................................11 1-5研究動機與目的...................................................................................12 第貳章 實驗方法與步驟...............................................................................17 2-1實驗構想...............................................................................................17 2-2銲錫合金的配置...................................................................................17 2-3銲錫合金的顯微組織觀察與分析.......................................................17 2-4熱性質分析...........................................................................................18 2-5銲錫合金與銅基材之潤濕行為...........................................................18 2-5-1銅基材之前處理............................................................................18 2-5-2潤濕天平試驗…............................................................................19 2-5-3接觸角測量實驗…........................................................................19 2-5-4界面組織之顯微結構觀察與分析................................................20 2-5-5急速冷卻控制界面介金屬化合物成長之實驗............................20 2-6銲錫合金與銅基材之間界面反應行為...............................................20 2-6-1浸鍍銲錫合金................................................................................24 2-6-2高溫時效處理................................................................................24 2-6-3界面介金屬化合物之觀察與分析................................................24 第參章 結果與討論.......................................................................................27 3-1錫鋅銀鋁鎵銲錫合金之顯微組織觀察與熱性質分析.......................27 3-1-1顯微結構分析................................................................................27 3-1-2熱差分析........................................................................................27 3-2錫鋅銀鋁鎵銲錫合金與銅基材之潤濕行為分析...............................33 3-2-1銲錫合金之潤濕行為....................................................................38 3-2-2助熔劑對潤濕性的影響................................................................42 3-2-3液態無鉛銲錫合金之表面張力....................................................42 3-2-4接觸角對潤濕行為的影響............................................................47 3-2-5銲錫合金與銅基材之界面觀察與分析........................................47 3-2-6界面反應之AgZn3介金屬化合物成長機構................................50 3-2-7界面反應之介金屬化合物對潤濕性的影響................................57 3-3錫鋅銀鋁鎵銲錫合金與銅基材之界面反應.......................................60 3-3-1銲錫合金與銅基材高溫時效處理之界面反應............................60 第肆章….........................................................................................................69 參考文獻.........................................................................................................70 自述.................................................................................................................78

    參考文獻

    1. J. Barrett, “Electronic system packaging: future reliability challenges”, Microelectronics And Reliability, Vol. 38, No. 6-8, 1998, pp. 1277~1286.
    2. D. P. Seraphim, R. C. Lasky, and C. Y. Li, Principles of Electronic Packaging, New York, McGraw-Hill, Inc., 1989, p. 3.
    3. D. D. L. Chung, Material for Electronic Packaging, Boston, Butterworth- Heinemann, 1995, pp. 3-4.
    4. P. T. Vianco and D. R. Frear, “Issue in the Replacement of Lead- Bearing Solders”, Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, 1993, pp. 14-19.
    5. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, Vol. 2, 1986, p. 1848.
    6. M. Abtew and G. Selvaduray, “ Lead-free Solders in Microelectronics”, Materials Science and Engineering, Vol. 27, No, 5-6, 2000, pp. 95-141.
    7. H. H. Manko, Solders and Soldering, 2nd., McGraw-Hill, New York, 1979, Chap. 3, pp. 41-123.
    8. J. S. Hwang, Solder Paste in Electronic Packaging, New York, Van Nostrand Reinhold, 1992, Chap. 4, pp. 71-121.
    9. S. Jin, “Development Lead-free solders: A challenge and Opportunity”, Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, 1993, p. 13.
    10. A. Z. Miric and A. Grusd, “Lead-free alloys”, Soldering & Surface Mount Technology”, Vol. 10, No. 1, 1998, pp. 19-25.
    11. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, Vol. 1, 1986, p. 71.
    12. J. Glazer, “Metallurgy of Low Temperature Pb-free solders for Electronic Assembly”, Internationals Materials Reviews, Vol. 40, No. 2, 1995, pp. 65-93.
    13. M. McComack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical-Properties”, Applied Physics Letters, Vol. 63, No. 1, 1993, pp. 15-17.
    14. W. J. Tomlinson and A. Fullylove, “Strength of Tin-Based Soldered Joints”, Journal of Materials Science, Vol. 27, No. 21, 1992, pp. 5777-5782.
    15. S. K. Kang and A. K. Sarkhel, “Lead(Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 701-707.
    16. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 765-772.
    17. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 13, No.4, 1990, pp. 736-742.
    18. M. McComack, G. W. Kammlott, H. S. Chen, and S. Jin, “New Lead-free, Sn-Ag-Zn-Cu Solder Alloy with Improved Mechanical Properties”, Applied Physicals Letters, Vol. 65, No. 10, 1994, pp. 1233-1235.
    19. P. T. Vianco, and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys: Part Ⅱ-Wettability and Mechanical Properties analysis”, Journal of Electronic Materials, Vol. 28, No. 10, 1999, pp. 1138-1143.
    20. P. T. Vianco, and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys: Part Ⅰ-Thermal Properties and Microstructural analysis”, Journal of Electronic Materials, Vol. 28, No. 10, 1999, pp. 1127-1137.
    21. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson and T. Gosselin, “Formation of Ag3Sn Plates in Sn-Ag-Cu Alloys and Optimization of their Alloy Composition”, Proceedings – Electronic Components and Technology Conference, New Orleans LA, USA, 2003, pp. 64-70.
    22. K. Zeng, V. Vuorinen and J. K. Kivilahti, “Intermetallic Reactions between Lead-free SnAgCu Solder and Ni(P)/Au Surface Finish on PWBs”, Proceedings – Electronic Components and Technology Conference, Orlando, FL, 2001, pp. 693-698.
    23. I. E. Anderson, B. A. Cook, J. Harringa, R. L. Terpstra, J. C. Foley and O. Unal, “Effects of Alloying in Near-Eutectic Tin-Silver-Copper Solder Joints”, Materials Transactions, Vol. 43, No. 8, 2002, pp. 1827-1832.
    24. C. M. T. Law, C. M. L. Wu, D. Q. Yu, L. Wang, and J. K. L. Lai, “Microstructure, Solderability, and Growth of Intermetallic Compounds of Sn-Ag-Cu-RE Lead-Free Solder Alloys”, Journal of Electronic Materials, Vol. 35, No. 1, 2006, pp. 89-93.
    25. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, Vol. 2, 1986, p. 2086.
    26. R. A. Islam, Y. C. Chan, W. Jillek, S. Islam, “Comparative Study of Wetting Behavior Mechanical Properties (Microhardness) of Sn-Zn and Sn-Pb solders”, Microelectronic Journal, Vol. 37, No. 8, 2006, pp. 705-113.
    27. Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K. F. Kobayashi, A. Yamaguch, A. Furuswa and K. Nishida, “Influence of the Intermetallic Reaction Layer on Reliability of CSP Joints Using Sn-8Zn-3Bi Solder and Ni/Au plating”, Materials Transactions, Vol. 45, No. 3, 2004, pp. 734-740.
    28. C. W. Huang and K. L. Lin, ”Wetting Properties of and Interfacial Reactions in Lead-free Sn-Zn Based solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer”, Materials Transactions, Vol. 45, No. 2, 2004, pp. 588-594.
    29. M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, ”Ductile to Brittle transition in Sn-Zn solder joints measured by impact test”, Scripta Materialia 51, 2004, pp. 641-645.
    30. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, 1998, pp. 2859-2865.
    31. H. M. Lee, S. W. Yoon and B. J. Lee, ”Thermodynamics Prediction of Interface Phases at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1161-1166.
    32. K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder/Cu Interface with or without Coating”, Journal of Material Research, Vol. 15, No. 4, 2000, pp. 884-891.
    33. K. Suganuma, “Advances in Lead-free electronics soldering”, Current Opinion in Solid State and Material Science, Vol. 5, No. 1, 2001, pp. 55-64.
    34. J. W. Yoon and S. B. Jung, “Reliability Studies of Sn-9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407 2006, pp. 141-149.
    35. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi and K. Sato “Interfacial Reactions and Reliability of Sn-Zn Solder joints on Cu or electroless Au/Ni(P) Bond-pads”, Journal of Materials Research, Vol, 19, No. 10, 2004, pp. 2887-2896.
    36. J. M. Song and Z. M. Wu, ”Variable Eutectic Temperature Caused by Inhomogeneous Solute Distribution in Sn-Zn System”, Scripta Materialia Vol. 54, 2006, pp. 1479-1483.
    37. M. N. Islam, Y. C. Chan, M. J. Rizvi and W. Jillek, “Investigation of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder”, Journal of Alloys and Compounds, Vol. 400, 2005, pp. 136-144.
    38. J. M. Song, G. F. Lan, T. S. Lui, L.H. Chen, “Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys”, Scripta Materialia, Vol. 48, 2003, pp. 1047–1051.
    39. K. L. Lin and C. L. Shin, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, 2003, pp. 95-100
    40. K. L. Lin and T. P. Liu, “High-temperature Oxidation of A Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, 1998, pp. 255-267.
    41. K. L. Lin, L. H. Wen and T. P. Liu, “The Microstructure of the Sn-Zn-Al solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 3, 1998, pp. 97-105.
    42. K. L. Lin and Y. C. Wang, “Wetting interaction of Pb free Sn-Zn-Al solders on Metal Plated Substrate”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1205-1210.
    43. T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-free Solder and Copper Base Metal in Wetting”, Materials Transactions, Vol. 43, No. 8, 2002, pp. 1784-1790.
    44. S. P. Yu, M. C. Wang and M. H. Hon, ”Formation of Intermetallic Compounds at Eutectic Sn-Zn-Al solder/Cu interface”, Journal of Material Research., Vol. 16, 2001, p. 76.
    45. K. I. Chen, S. C. Cheng, S. Wu and K. L. Lin, “Effects of Small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn–9Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 416, 2006, pp. 98–105.
    46. R. Strauss, SMT soldering Handbook 2nd., New York, Oxford, 1998, chap 2.
    47. H. H. Manko, Solders and Soldering 2nd, New York, McGraw-Hill, 1979, pp. 5-10.
    48. R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. Ariga and L. B. Hussain, “Effect of sample perimeter and temperature on Sn-Zn based lead-free solders”, Materials Letters, Vol. 60, 2006, pp. 2383-2389.
    49. F. G. Yost, F. M. Hosking and D. R. Frear, The Mechanics of solder Alloy Wetting and Spreading, New York, Van Nostrand Reinhold, 1993, pp. 12-19.
    50. D. R. Frear, W. B. Jones and K.R. Kinsman, Solder Mechanics, A State of the Art Assessment“, Warrendale, TMS, 1991, pp. 31-37.
    51. 黃家緯,錫鋅系無鉛銲錫之研究,博士論文,國立成功大學材料科學及工程學系,2005年,61-66頁。
    52. J. M. Song and K. L. Lin, “ Double peritectic behavior of Ag-Zn intermetallics in Sn-Zn-Ag solder alloys”, Journal of Material Research, Vol. 19, No. 9, 2004, pp. 2719-2724.
    53. C. H. Yo and K. L. Lin, “ Early dissolution behavior of copper in a molten Sn-Zn-Ag solder”, Journal of Material Research, Vol. 20, No.3, 2005, pp.666-671.
    54. C. H. Yo and K. L. Lin, “Early state soldering reaction and interfacial microstructure formed between molten Sn-Zn-Ag solder and Cu Substrate”, Journal of Material Research, Vol. 20 No.5, 2005, pp. 1242-1249.
    55. C. H. Yo and K. L. Lin, “The atomic-scale studies of the behavior of the crystal dissolution in a molten metal”, Chemical Physics Letter, Vol. 418, 2006, pp. 433-436.
    56. R. Hultgren, Selected Values of the Thermodynamics Properties of Binary Alloys PartⅡ, American Society for Metals, Ohio, 1973, pp. 795-800, 813-822.
    57. R. Hultgren,” Selected Values of Thermodynamics Properties of Metals and Alloys, John Wiley & Sons, New. York, 1963, pp. 388-392, 395-400, 708-723.
    58. O. Kubaschewski and J. A. Catterall., Thermochemical Data of Alloys, Lodon, Pergamon Press, 1956, pp. 66-69, 82-83.
    59. 余昌和,錫鋅銀銲錫合金元素在銲錫過程對銅金屬反應影響之研究,博士論文,國立成功大學材料科學及工程學系,2006年,37-43頁。
    60. J. W. Yoon and S.B. Jung,” Reliability studies of Sn-9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407, 2006, pp. 141-149.
    61. S. C. Yang, C.E. Ho, and C.W. Chang ,“Strong Zn concentration effect on the soldering reactions between Sn-Based solders and Cu”, Journal of Materials Research, Vol. 21, No. 10, 2006, pp. 2436-2439.
    62. K. Suganuma and K. S. Kim, ” Sn–Zn low temperature solder”, J Mater Sci: Mater Electron Vol. 18, 2007, pp. 121–127.
    63 T. B. Massalski, “Binary Alloy Phase Diagrams”, William W. Scott, Vol. 1, 1986, p. 168, 185.
    64 T. B. Massalski, “Binary Alloy Phase Diagrams”, William W. Scott, Vol. 2, 1986, p. 1165, 1179.
    65 F. G. Yost, F. M. Hosking and D. R. Frear, The Mechanics of solder Alloy Wetting and Spreading, New York, Van Nostrand Reinhold, 1993, pp. 148-150.
    66 P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1997.
    67 H. Baker, Alloy Phase Diagrams, ASM International, Metals Handbook, Vol. 3, 1992.
    68 P. Villars, A. Prince, and H. Okamoto, Handbook of ternary alloy phase diagrams, Materials Park, ASM International, 1995, p. 9516.
    69 J. L.C. Daams, P. Villars, and J. H. N. van Vucht, Atlas of crystal structure types for intermetallic phases, Materials Park, ASM International, 1991, pp. 6680-6683, 6799.
    70 R. Hultgren, Selected Values of the Thermodynamics Properties of Binary Alloys Part Ⅰ, Ohio, American Society for Metals, 1973, pp. 104-111, 115-121.
    71 K. I. Chen and K. L. Lin, ”The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-the Effect of Ag”, Journal of Electronic Materials, Vol. 31, No. 8, 2002, pp. 861-867.

    下載圖示 校內:立即公開
    校外:2007-07-18公開
    QR CODE