| 研究生: |
林政勳 Lin, Cheng-Hsun |
|---|---|
| 論文名稱: |
FC-PBGA覆晶球柵陣列組合體之無鉛錫球可靠度分析 Reliability Analysis of FC-PBGA Lead Free Solder Ball |
| 指導教授: |
吳俊煌
Wu, Jun-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 覆晶封裝 、有限元素分析 、無鉛錫球 、含鉛錫球 、疲勞壽命 、錫球間距 、錫球大小 |
| 外文關鍵詞: | FC-PBGA, finite element method, lead-free solder ball, lead solder ball, fatigue life, pitch spacing, solder ball size |
| 相關次數: | 點閱:167 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以有限元素分析軟體ANSYS15.0來模擬在FC-PBGA中錫球間距及錫球尺寸縮小,在加速溫度循環中無鉛錫球及有鉛錫球熱機械行為與疲勞壽命。
在本模擬中,首先利用ANSYS建立模型,並設定各元件材料參數完成網格化,之後施以溫度循環負載測試,觀察錫球在負載過程中的塑性應變變化(plastic strain range),並將結果代入Coffin-Manson疲勞壽命預測公式來探討錫球的可靠度。
結果與討論中探討錫球(96.5Sn3.5Ag)的分析結果。首先觀察各個錫球的應力、應變,找出發生最大von Mises應變的關鍵錫球,再分析關鍵錫球於熱負載過程中應力與應變的變化,藉由Coffin-Manson equation,計算出含鉛錫球疲勞壽命,分析結果不同錫球材料,本文以無鉛錫球(96.5Sn3.5Ag)、無鉛錫球(95.5Sn3.8Ag0.7Cu)及有鉛錫球(60Sn40Pb)考慮三種不同型組合體對錫球疲勞壽命的影響,以及不同高分子組件與散熱組件的參數設計對錫球疲勞壽命的影響。本文藉由分析結果得知哪些因素對FC-PBGA錫球疲勞壽命影響顯著。
最後為無鉛錫球在錫球間距及錫球尺寸縮小下的比較,觀察不同無鉛材料的關鍵錫球在整個熱負載過程中的應力、應變,並比較含鉛與無鉛錫球的疲勞壽命。
This master's thesis uses finite element software ANSYS15.0 to analyze the Filp-Chip Plastic Ball Grid Array packaging (FC-PBGA) which minify substrate and solder ball under accelerated thermal cycling loading. We will observe the thermal mechanical behaviors of the solder balls and research the fatigue life.
In this simulation, we use ANSYS to establish the FC-PBGA model, and apply different material parameters in components to finish meshing. After that, we applied thermal Cycling Test (TCT) loads and observed the plastic strain range of the solder ball during TCT loads. Therefore, we used the Coffin-Manson equation to predict the fatigue life and reliability of the solder ball.
[1] Chih Tang Peng, Chang Ming Liu, Ji Cheng Lin, Hsien Chie Cheng, Kuo Ning Chiang, “Reliability analysis and design for the fine-pitch flip chip BGA packaging”, IEEE Transactions on Components and Packaging Technologies , Vol. 27, No. 4, Dec. 2004 ,pp.684-693, 2004.
[2] Tong Yan Tee, Sivakumar, K., and Do-Bento-Vieira, A.,“ Board Level Solder Joint Reliability Modeling of LFBGA Package,” Proceedings of 2nd Electronic Materials and Packaging (EMAP) Conference, Hong Kong, pp.51-54, 2000.
[3]李國龍、張高華、劉后鴻、潘文峰,“田口方法對薄形細間距球柵陣列封裝之最佳化設計”,技術學刊,第二十八卷,第一期,頁15-23,2013年。
[4] A. Schubert, R. Dudek, H. Walter, E. Jung, A. Gollhardt, B. Michel, and H. Reichl, ”Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints”, IEEE Electronic Component and Technology Conference, pp.1246-1255, 2002.
[5] R. Dudek, H. Walter, R. Doering, and B. Michel, “Thermal fatigue modelling for SnAgCu and SnPb solder joints”, IEEE Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp.557-564, 2004.
[6] K. Tunga, K. Kacker, R.V. Pucha, S.K. Sitaraman, “Accelerated thermal cycling: is it different for lead-free solder? ” , IEEE Electronic Components and Technology Conference, Vol.2, pp.1579-1585, 2004.
[7] Q. Yan, L. Rex, R.G. Hamid, S. Polina, K.S. Jan, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints”, Microelectronics Reliability, Vol.46, pp.574-588, 2006.
[8] G. Z. Wang, Z. N. Cheng, K. Becker, J. Wilde, “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys”, Journal of Electronic Packaging, Vol.123, pp.247-253, 1998.
[9]K.M.Chen, “Die Crack Study for 40nm Lead Free Flip Chip Packaging”, United Microelectronic Co.,No.3,pp.730 - 733,2009.
[10] N. E. Dowing, “Mechanical Behavior of Materials”, Prentice-Hall, N.J., pp. 269–270,1993.
[11] John Lau, Pang, D.Y.R.Chong, and T. H. Low, “thermal Cycling Analysis of Flip-Chip Solder Joint Reliability”, IEEE Transactions on Component and Package Technologies, Vol. 24, No. 4,pp. 705 -712, 2001.
[12] L. Anand, “Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
[13] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation”, IEEE Electronic Components and Technology Conference, pp. 1048-1058, 2000.
[14] M. Amagai, M. Watanabe , M. Omiya, K. Kishimoto, T. Shibuya, “Mechanical characterization of Sn–Ag-based lead-free solders”, Microelectronics Reliability, Vol.42, pp.951-966, 2002.
[15] J. Zhu, “Effects of Anchor Pads in Micro-Scale BGA”, IEEE Electronic Components and Technology Conference, pp. 1731-1736, 2000.
[16] B. Rodgers, B. Flood, J. Punch, F. Waldron, “Experimental Determinatioio and Finite Element Model Validation of the Anand Viscoplasticity Model Constants for SnAgCu”, IEEE Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 490 – 496, 2005.
[17] Temperature Cycling, “JESD22 A104-D”, JEDEC, pp. 1–18, 2009.
[18] H. Cui , “Accelerated Temperature Cycle Test and Coffin-Manson Model for Electronic Packaging”, in Proc. Reliability Maintainability Symp.,Jan 24–27, pp. 556–560, 2005.
[19] Xiang Qiu, Jun Wang, “Study on Heat Dissipation in Package On Package (POP) ”, 11th International Conference on Electronic Packaging Technology & High Density Packaging, pp. 753–757,2010.
[20] L.F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954.
[21] S.S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953.
[22] H.D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder”, ASTM Special Technical Publication, Philadelphia, Pa, USA, pp. 342-370, 1985.
[23] E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.112, pp.110-114, 1990.
[24] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3, pp. 52-57, 1983.
[25] H.D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-9, No. 4, pp.423-431, 1986.
[26] J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation”, InterPack, pp.112-121, 1999.
[27] J.H.L. Pang, P.T.H. Low, B.S. Xiong, “Lead-free 95.5Sn-3.8Ag-0.7Cu Solder Joint Reliability Analysis For Micro-BGA Assembly”, IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, Vol.2, pp.131-136, 2004.
[28] T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
[29] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, pp. 456-465, 2002.
[30]H. H.Lee, “Finite Element Simulations with ANSYS Workbench 15”, 1^sted.,Taiwan, Chuan Hwa Book Co., 2014.
[31]PBGA 208, “Ball Grid Array (BGA) Packaging”, Intel Packaging Databook, 2000.
[32] K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages”, IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
[33] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FCBGA”, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
[34] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
[35] J.H. Lau, S.H. Pan, “Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints”, Journal of Microcircuits and Electronic Packaging, Vol.24, No.1, pp.11-18, 2001.
[36] J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, T.C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps”, IEEE Electronic Components and Technology Conference, pp.1073-1081, 2008.
[37] M. Pei and J. Qu, “Constitutive Modeling of Lead-Free Solders” , IEEE Advanced Packaging Materials: Processes, Properties and Interfaces, pp.45-49, 2005.
[38] 林家帆,“覆晶球柵陣列組合體之熱機械行為分析”,國立成功大學機械工程研究所碩士論文,2013年。
[39] T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
[40] George C. Lo “Electroplated Compliant High-Density Interconnects For Next-Generation Microelectronic Packaging”, M.S. thesis, Georgia Institute of Technology, U.S.,pp.37-39, 2005