簡易檢索 / 詳目顯示

研究生: 貝達心
Pertiwi, Mustika Endahing
論文名稱: 合成二氧化鈦被覆之銅-鋅氧化物奈米粉體 作為具高近紅外光反射特性之暗色顏料
Synthesis of Titania Coated Copper–Zinc Oxide Nanopowders as Dark Color Pigment with High Near-Infra Red Reflective Property
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 124
外文關鍵詞: Cu–Zn oxide nanopowders, TiO2 coating, dark color pigment, NIR reflective property
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關Cu-Zn氧化物奈米粉體之製備與二氧化鈦被覆,以作為具高近紅外光反射特性之暗色顏料。不同Cu/Zn比例之Cu-Zn氧化物奈米粉體可藉由溶膠凝膠法及後續在400–700oC的熱處理製得。所得粉體以熱重分析來鑑定熱處理引發的相轉換,以穿透式電子顯微鏡(TEM)分析其大小與形態,並以X射線繞射(XRD)確認CuO與 ZnO兩相共存之事實。接著將粉體與環氧樹脂均勻混合製成複合膜,量測其近紅外光反射特性,探討Cu/Zn比例、熱處理溫度、及膜厚度對紫外光-可見光吸收及近紅外光反射特性的影響。結果顯示,厚度220μm、含10wt% Cu-Zn氧化物奈米粉體(在50 oC合成、600oC熱處理,Cu/Zn=1/19)之複合膜,在近紅外光有88%的反射率,且顏色維持為暗色。進一步在Cu-Zn氧化物奈米粉體表面被覆二氧化鈦,藉著調整二氧化鈦前驅物濃度及反應時間改善近紅外光反射特性。以XRD、TEM及X射線能量散佈(EDX)光譜鑑定最終產品之大小、型態、及組成。以高解析TEM(HRTEM)及界面電位計確認二氧化鈦在Cu-Zn氧化物奈米粉體表面之被覆。由紫外光-可見光吸收及近紅外光反射特性的量測,顯示二氧化鈦被覆之Cu-Zn氧化物奈米粉體可作為具高近紅外光反射特性之暗色顏料。

    This thesis concerns about the preparation and titania coating of Cu–Zn oxide nanopowders as dark color pigments with high near infra-red (NIR) reflective property. Cu–Zn oxide nanopowders with various Cu/Zn ratios were prepared by sol-gel route and the followed annealing 400–700oC. Thermogravimetric measurement was used to identify the thermally-induced phase transformations. Their size and morphology were characterized by transmission electron microscopy (TEM), and the co-presence of CuO and ZnO phases was demonstrated by the analysis of X-ray diffraction (XRD) pattern. The resulting Cu–Zn oxide nanopowders were mixed homogeneously with epoxy resin and then casted into composite films for the measurement of NIR reflective property. The effects of Cu/Zn ratio, annealing temperature, and film thickness on the UV-Vis absorption and NIR reflection were studied. It was shown that the 220μm-thick composite film containing 10 wt% of Cu–Zn oxide nanopowders with the Cu/Zn ratio of 1/19 synthesized at 50oC and annealed at 600oC exhibited 88% of reflection in NIR region and maintained a dark color. Further titania coating was done to improve the NIR reflection property by varying the precursor concentration of titania and reaction time. The size, morphology and composition of final product were characterized by XRD, TEM, and energy dispersive X-ray (EDX) spectroscopy. High resolution TEM (HRTEM) and zeta potential analyses were carried out to confirm the presence of titania shells on the surface of Cu-Zn oxide nanopowders. From the measurements of UV-Vis absorption and NIR reflection, it was found that amorphous titania-coated Cu–Zn oxide nanopowders could be used as dark color pigment with high NIR reflective property.

    CONTENTS ABSTRACT i ACKNOWLEDGEMENT………………………………………………………………..iii CONTENTS ………………………………………………………………………………iv LIST OF TABLES……………………………………………………………………....viii LIST OF FIGURES x CHAPTER I INTRODUCTION 1 1.1 Background……………………………………………………………………… 1 1.1.1 Fundamentals of Nanomaterials…………………………………………….1 1.1.2 Sol-Gel Processing………………………………………………………….1 1.2 Nanomaterials in Near-Infra Red Reflective Application………………………….4 1.2.1 Perspective of Colors……………………………………………..………...4 1.2.2 Near-Infra Red Reflective Pigments….…………………………………….5 1.3 Research Motivation……………………………………………………….……….6 CHAPTER II LITERATURE REVIEW………………………………………………..8 2.1 Solar Spectrum…………………………………………...………………………..10 2.2 Mechanism and Origin of Reflection……………………………………………...11 2.3 Applications of Infrared Imaging………………………………..………………...15 2.3.1 Application of Infrared Imaging in Forensic………………………………16 2.3.2 Application of Infrared Imaging in Military………………………………17 2.4 Infrared Reflective Pigments…………………………………………………...…17 2.4.1 Classification of Infrared Reflective Pigments……………………………18 2.4.2 Properties of Infrared Reflective Pigments………………………………..19 2.4.3 Inorganic Infrared Reflective Pigments……………………………………22 2.4.4 Measurement of Infrared Reflective Property……………………….…….24 2.5 Properties of Copper Oxide and Zinc Oxide………………………………………31 2.5.1 General Properties of Copper Oxide and Zinc Oxide……………………..31 2.5.2 Copper Oxide and Zinc Oxide as Infrared Reflective Pigment……………32 2.6 Synthesis of Copper Oxide and Zinc Oxide……………………………………….36 2.6.1 Synthesis of Copper Oxide……………………………….………………..36 2.6.2 Synthesis of Zinc Oxide………………………………………..…...……..38 2.7 Toxicity of Copper Oxide and Zinc Oxide……………………………....……..…40 2.8 Titania Coating of Copper Oxide and Zinc Oxide…………………………….….41 2.8.1 Properties of Titanium Dioxide……………………………………………41 2.8.2 Titanium Dioxide as Pigment……………………………………….……..43 2.8.3 Synthesis of Titanium Dioxide…………………………………………….44 2.8.4 Core – Shell Nanoparticles Fabrication……………………………………48 CHAPTER III EXPERIMENT DETAILS……………………………….…………….58 3.1 Materials and Instruments………………………………………………………….….58 3.1.1 Materials and Chemicals…………………………………..………….…...58 3.1.2 Experiment Instruments……………………………………………...…....58 3.2 Procedures…………………………………………………………………………….59 3.2.1 Synthesis of Cu-Zn Oxide Nanopowders…………………………………59 3.2.2 Titania Coating on Cu-Zn Oxide Nanopowders…………………………...61 3.2.3 Fabrication of Composite Films…………………………………….….…62 3.3 Characterization and Measurement…………………………………………………...63 3.3.1 Differential Thermal Analysis - Thermo Gravimetric Analysis…………..63 3.3.2 X- Ray Diffraction Analysis…………………………………………….....63 3.3.3 Transmission Electron Microscope………………………………………..63 3.3.4 Thickness Measurement of Composite Films……………………………..64 3.3.5 Near-Infra Red Reflection Measurement………………………………….64 3.3.6 Evaluation of Performance for NIR Reflection…………………..…….....64 3.3.7 UV/VIS Absorption Spectra…………………………………………….…65 3.3.8 Zeta Potential Measurement……………………………………………….65 3.3.9 Energy Dispersive X-ray Spectroscopy……………………………….…...66 3.3.10 High Resolution Transmission Electron Microscope………………….…..66 CHAPTER IV RESULTS AND DISCUSSION…………………………………...……67 4.1 Mixed Copper – Zinc Oxide Nanopowders as NIR Reflective Pigment….……....…67 4.1.1 Formation of Copper-Zinc Dried Precursor…………………………….....67 4.1.2 Thermochemical Behavior of Precursor…………………………….….…68 4.1.3 Phase Analysis of Annealed Powder……………………………………..69 4.1.4 Physical Appearance of the Annealed Powder…………………………...72 4.1.5 Size Measurement and Morphology of Particles…………………………73 4.1.6 UV – VIS Absorption Measurement……………………………………..74 4.1.7 pH-Dependence of Zeta Potential……………………………………......75 4.1.8 Composite Films Fabrication……………………………………….…....76 4.1.9 Reflective Property of Copper – Zinc Oxide Nanopowders……………...77 4.1.9.1 Copper/Zinc Ratio Dependence of Reflectivity…………….…....77 4.1.9.2 Annealing Temperature Dependence of Reflectivity……….….…79 4.1.9.3 Reaction Temperature Dependence of Reflectivity…….................81 4.1.9.4 Film Thickness Dependence of Reflectivity…….......................….82 4.1.10 Evaluation of Composite Films Performance……………………………..84 4.1.10.1 Copper/Zinc Ratio Dependence of Thermal Exposure Process.….84 4.1.10.2 Annealing Temperature Dependence of Thermal Exposure Process85 4.1.10.3 Reaction Temperature Dependence of Thermal Exposure Process.86 4.1.10.4 Film Thickness Dependence of Thermal Exposure Process..……..87 4.2 Titania Coated Copper – Zinc Oxide Nanopowders as NIR Reflective Pigment…....89 4.2.1 Formation of Titania Coated Copper – Zinc Oxide Nanopowders.…..…...89 4.2.2 Physical Appearance of Coated Powder……………………………..….…90 4.2.3 Phase Analysis of Coated Powder…………………………………….…...91 4.2.4 EDX Analysis………………………………………………………….......92 4.2.5 Size Measurement and Morphology of Coated Powder……………….….93 4.2.6 UV – VIS Absorption Measurement……………………………………....96 4.2.7 pH-Dependence of Zeta Potential…………………………………...….…97 4.2.8 Composite Film Fabrication…………………………………………….....99 4.2.9 Reflective Property of TiO2-coated Copper – Zinc Oxide ……………..…99 4.2.9.1 Coating Time Dependence of Reflectivity………………….…..…99 4.2.9.2 TTIP Concentration Dependence of Reflectivity…………….…..102 4.2.9.3 Effect of Physical Mixing on Reflectivity………………….….…102 4.2.10 Evaluation of Composite Films Performance……………………………104 4.2.10.1 Coating Time Dependence of Thermal Exposure Process…...….104 4.2.10.2 TTIP Concentration Dependence of Thermal Exposure Process...105 CHAPTER V CONCLUSIONS………………………………………………………..107 REFERENCES………………………………………………………………………….108 APPENDIX……………………………………………………………………………...119 CURRICULUM VITAE………………………………………………………………..124

    REFERENCES
    [1] H.S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology Vol. I. Synthesis and Processing, Academic Press, San Diego, CA, p. ix (2000).
    [2] D.H. Chen and X.R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Material research Buletin, 36, 1369-1377 (2001).
    [3] A.C. Pierce, Introduction to Sol-Gel Processing, Kluwer Academic Publishers, Norwell, MA (1998).
    [4] S.H. Lee, Y.S. Her and E. Matijevic , Preparation and Growth Mechanism of Uniform Colloidal Copper Oxide by the Controlled Double-Jet Precipitation, J. Colloid Interface Sci., 186, 193-202 (1997).
    [5] T. Sugimoto and E. Matijevic, Colloidal cobalt hydrous oxides: Preparation and properties of monodispersed Co3O4, J. Inorg. Nuclear Chem., 41 (2), 165-172 (1979).
    [6] S.A. Makhlouf, F.T. Parker, F.E. Spada, and A.E. Berkowitz, Magnetic Anomalies in NiO nanoparticles, J. Appl. Phys., 81 (8), 5561-5563 (1997).
    [7] E. Matijevic and P. Scheiner, Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate solutions, J. Colloid Interface Sci., 63 (3), 509-524 (1978).
    [8] T. Sugimoto and E. Matijevic, Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels, J. Colloid Interface Sci., 74 (1), 227-243 (1980).
    [9] E. Matijevic, M.Budnik and L.Meites, Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution, J. Colloid Interface Sci., 61 (2), 302-311 (1977).
    [10] M.A. Blesa, A.J.G. Maroto, S.I. Passaggic, N.E. Figliolia and G. Rigotti, Hydrous zirconium dioxide: interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures, J.Mater. Sci., 20, 4601-4609 (1985).
    [11] L. Spanhel and M.A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc., 113, 2826-2833 (1991).
    [12] G. Verhoeven, Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography, Journal of Archaeological Science, 35, 3087–3100 (2008).
    [13] X.Z. Lin, P. Liu, J.M. Yu, and G.W. Yang, Synthesis of CuO Nanocrystals and Sequential Assembly of Nanostructures with Shape-Dependent Optical Absorption upon Laser Ablation in Liquid, J. Phys. Chem. C, 113, 17543–17547 (2009).
    [14] D.M. Hyde, S.M. Brannon, Investigation of Infrared Reflective Pigmentation Technologies for Coatings and Composite Applications. COMPOSITES 2006 Convention and Trade Show American Composites Manufacturers Association Paper (2006).
    [15] M. Baneshi, S. Maruyama, H. Nakai and A. Komiya, A new approach to optimizing pigmented coatings considering both thermal and aesthetic effects, Journal of Quantitative Spectroscopy & Radiative Transfer, 110, 192–204 (2009).
    [16] K.M. Shrestha, C.M. Sorensen and K.J. Klabunde, Synthesis of CuO Nanorods, Reduction of CuO into Cu Nanorods, and Diffuse Reflectance Measurements of CuO and Cu nanomaterials in the Near Infrared Region, J. Phys. Chem. C, 114, 14368–14376 (2010)
    [17] R. Levinson, P. Berdahl, H. Akbari, W. Miller, I. Joedicke, J. Reilly, Y. Suzuki, M. Vondran, Methods of creating solar reflective non white surfaces and their applications to residential roofing materials, Sol. Energy Mater. Solar Cells, 91, 304 (2007).
    [18] http://www.coldblack.ch/ and http://www.coldblack.ch/uploads/media/coldblack_Product_Info_Sheet_English.pdf
    [19] M.Pomerantz, B. Pon, H. Akbari, S. Chang, The Effect of Pavements’ Temperatures on Air Temperatures in Large Cities, Report No. LBNL-43442, Lawrence Berkeley National Laboratory, Berkeley, CA. (2000).
    [20] V. C. Malshe and M. A. Sikchi, “Basics of Paint Technology” Published by V. C. Malshe, UICT, Mumbai (2002).
    [21] A.K. bendiganavale and V.C. Malshe. Infrared Reflective Inorganic Pigments. Recent Patents on Chemical Engineering, 1, 67-69 (2008)
    [22] G. Waldman, Introduction to Light: The Physics of Light, Vision, and Color. Dover Publications, New York (2002).
    [23] J.C. Slater, N.H. Frank, Electromagnetism. Dover Publications, New York (1974).
    [24] R.A. Freedman, W.J. Kaufman III, Universe, seventh ed., W.H. Freeman and Company, New York. (2005).
    [25] Akzo Nobel, COOL CHEMISTRY® Brochure tcm 111-8124, Cool Chemistry Series. Improved energy efficiency with superior performance.
    [26] H. Iyota, H. Sakai, K. Emura, N. Igawa, H. Shimada and N. Nishimura, Method for Measuring Solar Reflectance of Retroreflective Materials Using Emitting-Receiving Optical Fiber.
    [27] P.G.Dorrell, Photography in Archaeology and Conservation, second ed., Cambridge University Press, Cambridge (1994).
    [28] R&D and industrial applications for NIR cameras, Technical notes, www.flir.com accessed at 10 May 2011.
    [29] R.F. Brady Jr., L.V. Wake, Principles and formulations for organic coatings with tailored infrared properties, Prog. Org. Coat, 20, 1 (1992).
    [30] K.L. Uemoto, N.M.N, Sato, V.M, John, Estimating thermal performance of cool colored paints, Energy and Buidings, 42, 17-22 (2010).
    [31] Anon, Effluent toxicity status in water poluting industries. Part I – Dye & dye intermediates, bulk drugs & textile industries (2002).
    [32] J.A. Johnson, J.J. Heidenreich, R.A. Mantz, P.M. Baker, M.S. Donley, A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings, Progress in Organic Coatings, 47, 432–442 (2003).
    [33] W.E.Vargas, Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering. Journal of Applied Physics, 88, 4079–4084 (2000).
    [34] R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments—part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements, Sol. Energy Mater. Solar Cells, 89, 319, (2005).
    [35] R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments—part II: survey of common colorants, Sol. Energy Mater. Solar Cells, 89, 351 (2005).
    [36] R. Levinson, et al. Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Solar Energy Materials and Solar Cells, 91, 304–14 (2007).
    [37] P. Jeevanandam, R. S. Mulukutla, M. Phillips, S. Chaudhuri, L. E. Erickson and K. J. Klabunde, Near Infrared Reflectance Properties of Metal Oxide Nanoparticles, J. Phys. Chem. C, 111, 1912-1918 (2007).
    [38] E. Ozel, G. Unluturk, S. Turan, Production of brown pigments for porcelain insulator applications, J. European Ceram. Soc., 26, 735 (2006).
    [39] K. J. Sreeram, C. P. Aby, B. U. Nair and T. Ramasami, Cool colored colorants based on rare earth metal ions, Solar Energy Materials & Solar Cells, 92, 1462-1467 (2008).
    [40] G. Giable, G. Gisha, P.P. Rao, M.L.P. Reddy, Synthesis and characterization of environmentally benign nontoxic pigments: RE2Mo2O9 (RE =La or Pr), Chem. Lett., 34, 1702 (2005) .
    [41] J. E. Song, Y.H. Kim and Y.S. Kang, Preparation of indium tin oxide nanoparticles and their application to near IR-reflective films. Current Applied Physics, 6, 791-795 (2006)
    [42] T. R. Sliwinski, R. A. Pipoly and R. P. Blonski, Infrared reflective color pigment, US Patent 6454848 (2002).
    [43] E. L. Decker, R. E. Jennings, C. H. Munro and N. R. Vanier, Coating system exhibiting cool dark color, US Patent 2008187708 (2008).
    [44] M. L. Shiao, G. F. Jacobs, H. M. Kalkanoglu and K. C. Hong, Mineral-surfaced roofing shingles with increased solar heat reflectance, and process for producing same, US Patent 7452598 (2008).
    [45] J. A. Haines, Infrared reflective wall paint, US Patent 7157112 (2007).
    [46] M. L. Shiao, K. C. Hong and W. T. Stephens, Roofing granules with high solar reflectance, roofing products with high solar reflectance, and processes for preparing same, EU Patent WO2008147972 (2008).
    [47] W. Scharnke and V. Mende, IR reflective elements made of impact-resistance plastic, and a process for their production, US Patent 7129285 (2006).
    [48] H. Yanagimoto, Y. Zama, H. Okamoto, T. Hosoda, Y. Abe and M. Nakamura “Near-infrared reflecting composite pigments” US Patent 6521038 (2003).
    [49] E. O'Keefe, Thermal infrared reflective pigments for coatings, US Patent 7455904 (2008).
    [50] F. Babler, IR reflective pigment compositions, US Patent 6989056 (2006).
    [51] M. L. Shiao, K. C. Hong, H. M. Kalkanoglu and G. F. Jacobs “Solar heat-reflective roofing granules, solar heat-reflective shingles, and process for producing same” EU Patent WO2008121749 (2008).
    [52]http://www.ferro.com/NR/rdonlyres/E1EDD83A-A415-4A01-A619-DE358B7447D6 /2878/V799TDS.pdf
    [53] J. Christner. Solar-reflective (cool) color. TFL Ledertedhnik AG, world leather magazine February/March (2007)
    [54] V.S. Vishnu and M. L. Reddy, Near-infrared Reflecting Yellow Inorganic Pigments Based on Molybdenum-doped Yttrium Cerate Synthesis, Characterization, and Optical Properties. Chem. Lett., 39, 820-821 (2010).
    [55] T. Thongkanluang, P. Limsuwan and P. Rakkwamsuk, Preparation of IR Reflective Green Pigment, Advanced Materials Research, 55-57, 805-808 (2008).
    [56] T. Thongkanluang, P. Limsuwan and P. Rakkwamsuk, Preparation and using of high near-infrared reflective green pigments on ceramic glaze, Journal of the Ceramic Society of Japan, 118, 349-352 (2010).
    [57] T. Izumi, K. Izumi, N. Kuroiwa, A. Senjuh, A. Fujimoto, M. Adachi, T. Yamamoto, Preparation of electrically conductive nano-powder of zinc oxide and application to transparent film coating, Journal of Alloys and Compounds, 480, 123–125 (2009).
    [58] W. Miller, H. Akbari, R. Levinson, P. Berdahl, Special Infrared Reflective Pigments Make a Dark Roof Reflect Almost Like a White Roof, LBNL, Lawrence Berkeley National Laboratory, Berkeley, CA. (2006).
    [59] W. Miller, D.S. Parker, H. Akbari. Painted metal roofs are energy-efficient, durable and sustainable. LBNL, Lawrence Berkeley National Laboratory, Berkeley, CA. (2006).
    [60] L. V. Wake and R. F. Brady, Formulating infrared coatings for defence application, MEL Research report. MRL-RR-1-93, (2003).
    [61] Peter A. Lewis, Pigment Handbook, volume I, John Wiley and Sons (1988).
    [62] T. Brock, M. Groteklaes, P. Mischke, European Coatings Handbook (2000).
    [63] Copper Development Association, Uses of Copper Compounds: Other Copper Compounds, 2007. http://www.copper.org/applications/compounds/other_compounds.html.
    [64] J.B. Forsyth and S.Hull, The effect of hydrostatic pressure on the ambient temperature structure of CuO, J. Phys.: Condens. Matter, 3, 5257-5261(1991).
    [65] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V .Avrutin, S.J.Cho, et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98: 041301, doi:10.1063/1.1992666 (2005).
    [66] U. Rossler, Landolt-Bornstein, New Series, Group III. Vol. 17B, 22, 41B, Springer, Heidelberg, (1999).
    [67] Greenwood, N. Norman, Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, ISBN 0080379419 (1997).
    [68] J. M. Spero, B. Devito, L. Theodore, Regulatory chemical handbook, CRC Press, ISBN 0824703901 (2000).
    [69] Y. Zhao, J. Zhao, Y. Li, D. Ma, S. Hou, L. Li, X. Hao and Z. Wang, Room temperature synthesis of 2D CuO nanoleaves in aqueous solution, Nanotechnology, 22, 115604 (9pp) (2011).
    [70] R.K. Swarnkar, S.C. Singh and R. Gopal, Optical Characterizations of Copper Oxide Nanomaterial, ICOP-International Conference on Optics and Photonics (2009).
    [71] J.Zhu, D. Li, H. Chen, X. Yang, L. Lu, X. Wang, Highly dispersed CuO nanoparticles prepared by a novel quick precipitation method, Materials Letters, 58. 3324– 3327(2004).
    [72] R. Nikolic, S. Zec1, V. Maksimovic and S. Mentus, Physico-Chemical Characterization Of Thermal Decomposition Course In Zinc Nitrate-Copper Nitrate Hexahydrates. Journal of Thermal Analysis and Calorimetry, 86, 2, 423–428 (2006).
    [73] J.H. Kim, V.I. Babushok, T.A. Germer, G.W. Mulholland and S.H. Ehrman, Co-solvent Assisted Spray Pyrolysis for the Generation of Metal Particles Journal of Materials Research 18, 1614–1622 (2003).
    [74] S. Jung, S. Jeon and K. Yong, Fabrication and characterization of flower-like CuO–ZnO heterostructure nanowire arrays by photochemical deposition, Nanotechnology, 22, 015606 (8pp) (2011) .
    [75] Q.B. Ma, Z.Z. Ye, H.P. He, L.P. Zhu, W.C. Liu, Y.F. Yang, L. Gong, J.Y. Huang, Y.Z. Zhang and B.H. Zhao, Highly near-infrared reflecting and transparent conducting ZnO : Ga films: substrate temperature effect, J. Phys. D: Appl. Phys., 41, 055302-06 (2008).
    [76] S. Cho, J.W. Jang, A. Jung, S.H. Lee, J. Lee, J.S. Lee, and K.H. Lee, Formation of Amorphous Zinc Citrate Spheres and Their Conversion to Crystalline ZnO Nanostructures Langmuir, 27(1), 371–378 (2011).
    [77] D.H. Chen and I.C. Chiang, Preparation and Photoluminescence of ZnO Nanocrystals by a High temperature Organometallic Route, Chemistry Letters, 37 (9), 928-929 (2008).
    [78] Y.J. Kwon, K.H. Kima, C.S. Limb and K.B. Shim, Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route, Journal of Ceramic Processing Research, 3 (3), 146~149 (2002).
    [79] M. Mortimer, K. Kasemets, A. Kahru, Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila, Toxicology, 269, 182–189 (2010).
    [80] K.R. Raghupathi, R.T. Koodali and A.C. Manna, Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles, Langmuir, 27, 4020–4028 (2011).
    [81] I.L. Hsiao and Y.J. Huang, Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO nanoparticles, Chem. Res. Toxicol, 24, 303-313 (2011).
    [82] H.Y. Chuang, D. H. Chen, Catalyst-free low temperature synthesis of discrete anatase titanium dioxide nanocrystals with highly thermal stability of titanium dioxide nanocrystals with highly thermal stability, J Nanopart Res,10, 233–241 (2008).
    [83] V.V. Hoang, H. Zung, and N.H.B. Trong, Structural properties of amorphous TiO2 nanoparticles, Eur. Phys. J. D, 44, 515–524 (2007).
    [84] P. Roy, S. Berger, and P. Schmuki, Angew. TiO2 Nanotubes: Synthesis and Applications, Chem. Int. Ed., 50, 2904 – 2939 (2011).
    [85] A. Mehrizad, P. Gharbani, S.M. Tabatabii, Synthesis of nanosized TiO2 powder by Sol-Gel method in acidic conditions, J. Iran. Chem. Res., 2, 145-149 (2009).
    [86] A. Ahmad, G.H. Awan, S. Aziz, Synthesis And Applications of Tio2 Nanoparticles, Pakistan Engineering Congress, 70th Annual Session Proceedings.
    [87] Y. Mastai, Y. Diamant, S. T. Aruna and A. Zaban, TiO2 nanocrystalline Pigmented polyethylene foils for radiative cooling applications: synthesis and characterization, Langmuir, 17, 7118-7123 (2001).
    [88] L.H. Kao, T.C. Hsu, H.Y. Lu, Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment, Journal of Colloid and Interface Science, 316, 160–167 (2007).
    [89] A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan and R. Stevens, Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications, Surf. Interface Anal., 38, 473–477, (2006).
    [90] Z.R. Ismagilov, L.T. Tsykoza, N.V. Shikina, V.F. Zarytova, V.V. Zinoviev, S.N. Zagrebelnyi, Synthesis and stabilization of nano-sized titanium dioxide, Russian Chemical Reviews 78 (9) (2009).
    [91] D.H. Chen and H.Y. Chuang, Catalyst-free low temperature synthesis of discrete anatase titanium dioxide nanocrystals with highly thermal stability and UVC-cut ability, J Nanopart Res, 10, 233-241 (2008).
    [92] T. Sugimoto and T. Kojima, Formation Mechanism of Amorphous TiO2 Spheres in Organic Solvents. Roles of Ammonia, J. Phys. Chem. C, 112, 18760–18771 ( 2008).
    [93] D. B. Mitzi, Thin-Film Deposition of Organic-Inorganic Hybrid Materials, Chem. Mater, 13, 3283-3298 (2001).
    [94] J. Park, J. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals, Angew. Chem. Int. Ed., 46, 4630 – 4660, (2007).
    [95] S. Mahata, D. Kundu, Hydrothermal synthesis of aqueous nano-TiO2 sols Materials, Science-Poland, 27 (2) 2009.
    [96] G. Kickelbick and L.M. Marzan, Core – Shell Nanoparticles, Encyclopedia of Nanoscience and Nanotechnology, 2, 199-200 (2004).
    [97] H. Sakai, T. Kanda, H. Shibata, T. Ohkubo and M. Abe, Preparation of Highly dispersed Core/Shell-type Titania Nanocapsules containing a Single Ag Nanoparticle, J. Am. Chem. Soc., 128, 4944-4945 (2006).
    [98] R.A.Caruso and M.Antonietti, Sol-Gel Nanocoating: An Approach to the Preparation of Structured Materials, Chem. Mater, 13, 3272-3282 (2001).
    [99] J.H. Werth, H. Knudsen and H. Hinrichsen, Agglomeration of oppositely charged particles in nonpolar liquids, PHYSICAL REVIEW E, 73, 021402 (2006).
    [100] N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions, Powder Technology, 160, 121 – 126 (2005).
    [101] M. Kosmulski, Chemical Properties of Material Surfaces, Macel Dekker (2001).
    [102] J.A. Lewis, Colloidal Processing of Ceramics, JACS, 83:10, 2341-2359 (2000).
    [103] A. Katherine, D. Guzman, M.P. Finnegan and J.F. Banfield, Influence of Surface Potential on Aggregation and Transport of Titania nanoparticles, Environ. Sci. Technol., 40, 7688-7693 (2006).
    [104] K. Park, Q. Zhang, B.B. Garcia, and G. Cao, Effect of Annealing Temperature on TiO2-ZnO Core-Shell Aggregate Photoelectrodes of Dye-Sensitized Solar Cells, J. Phys. Chem. C, 115, 4927–4934 (2011).
    [105] O. H. Decker and C. N. Meyer, Near Infrared Radiation curable powder coating composition having enhanced flow characteristics, US Patent 20080103224 (2008).
    [106] D.H. Chen and I.C. Chiang, Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route, Nanotechnology, 22, 015602 (7pp) (2009).
    [107] M.H. Liao, C.H. Hsu, D.H. Chen, Preparation and properties of amorphous titania-coated zinc oxide nanoparticles, Journal of Solid State Chemistry, 179, 2020–2026 (2006).

    無法下載圖示 校內:2013-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE