| 研究生: |
許庭瑄 Hsu, Ting-Hsusan |
|---|---|
| 論文名稱: |
使用回收橡膠與碳纖之輕量化鹼激發爐石3D列印材料性能研究 Performance of Lightweight Alkali-Activated Slag-Based 3D Printing Materials Composed of Recycled Rubber and Carbon Fibers |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 3D列印混凝土 、鹼激發爐石材料 、回收橡膠 、回收碳纖維 、輕量化 、回收再利用 |
| 外文關鍵詞: | 3D-printed concrete, alkali-activated slag, recycled rubber, recycled carbon fiber, lightweight, recycling and reuse |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以鹼激發爐石材料應用於3D列印中,選用添加不同比例回收橡膠與碳纖,對所製成材料之列印性、輕量化、乾縮行為、力學性能及方向性等影響。透過系統性之配比設計與試驗結果分析,比較不同比例爐石、橡膠及碳纖下3D列印材料之性能差異,進而評估其應用於非主要承重構件之可行性。
試驗結果顯示,隨回收橡膠取代骨材比例增加,所製成3D列印材料之密度,由市售約1.8 g/cm³降低至1.3~1.5 g/cm³,輕量化效果顯著。3D列印性方面,爐石與骨材比例為1:1時,所製成3D列印材料操作便利性、連續性及建構性表現最佳,添加碳纖有助於改善漿體建構性與列印連續性,但過高添加量反而降低操作便利性。另外,乾縮試驗結果顯示,不同試驗組之乾縮率介於0.9~1.5 %,高於市售3D列印材料之乾縮率。
力學性能方面,試體抗壓強度隨橡膠比例增加而降低,但添加碳纖可部分彌補強度損失,其中,各試驗組沿列印方向之抗壓強度普遍高於其他方向,顯示抗壓強度方向性主要源自3D列印製程,而抗彎強度與韌性則對碳纖添加比例非常敏感,同時韌性之非均向性更加明顯,此現象可能由於碳纖於列印過程中主要沿擠出方向排列所造成。
綜合上述3D列印材料性能,本研究選用爐石與骨材比例為1:1且碳纖佔骨材比例為10 %製成3D列印材料,同時,進行設計師椅3D列印之驗證實作。實體構件列印結果顯示,其成形品質良好且可承受成人反覆乘坐,重量較市售對照組減少約25.8 %,證實該配比所製成3D列印材料,於輕量化3D列印家具與非主要承重構件應用上具可行性。
This study explores alkali-activated slag (AAS) for 3D printing by incorporating recycled rubber (as aggregate replacement) and recycled carbon fibers at various dosages. Mixtures were systematically designed and tested to quantify printability, lightweight performance, drying shrinkage, mechanical properties, and anisotropy, and to assess suitability for non-primary load-bearing components.
Increasing rubber content reduced density from ~1.8 g/cm³ (commercial reference) to 1.3–1.5 g/cm³. The slag-to-aggregate ratio of 1:1 provided the best operability, printing continuity, and buildability. Carbon fibers improved buildability and continuity, though excessive fiber reduced operability. Drying shrinkage ranged from 0.9 % to 1.5 %, higher than the commercial reference.
Compressive strength decreased with higher rubber replacement, while carbon fibers partially mitigated the loss. Specimens tested along the printing direction generally exhibited higher compressive strength than other directions, indicating process-induced anisotropy. Flexural strength and toughness were highly sensitive to fiber dosage, and toughness anisotropy increased, likely due to fiber alignment along the extrusion path.
A mixture with slag : aggregate = 1:1 and 10 % carbon fiber (by aggregate fraction) was selected to 3D-print a designer chair. The printed component showed good dimensional quality, withstood repeated adult seating, and achieved a 25.8% weight reduction versus the commercial reference, demonstrating feasibility for lightweight 3D-printed furniture.
[1] Health and Safety Executive, Manual handling at work: A brief guide, INDG143 rev4, 2020.
[2] Zandifaez, P., Shen, Z., Sorgenfrei, R., Li, Y., Dias-da-Costa, D., & Zhou, H. Pathways to Formulate Lightweight and Ultra-Lightweight 3d Printable Cementitious Composites. SSRN, 2024.
[3] 環境部全球資訊網,https://www.moenv.gov.tw/。
[4] Liu, N., & Chen, B. Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Construction and Building Materials, 68, 227–232, 2014.
[5] Miah, M.J., Ren, H., Paul, S.C., Babafemi, A.J., Sharma, R., & Jang, J.G. Performance of eco-friendly concrete made from recycled waste tire fine aggregate as a replacement for river sand. Structures, 58, 105463, 2023.
[6] 宋学峰、王骏、王艳,纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性,材料导报(B),31(11),121-124,2017。
[7] Icon Build, https://iconbuild.com/.
[8] Studio RAP, https://studiorap.nl/.
[9] 創夏設計,https://www.tag-living.tw/。
[10] 樂土,https://www.techome.com.tw/。
[11] Hiremath, S., Mathapati, G.S., Chiniwar, D.S., & Vishwanatha, H.M. Performance evaluation of cementitious composites by designing an extrusion system for construction 3D printing. Sci. Rep. 15, 17669, 2025.
[12] Kilic, U., Soliman, N., Omran, A., & Ozbulut, O. E. Effects of cellulose nanofibrils on rheological and mechanical properties of 3D printable cement composites. Cement and Concrete Composites, 152, 105617, 2024.
[13] 李哲翰,三維列印輕質骨材混凝土工程性質之探討,碩士論文,國立嘉義大學土木與水資源工程學系,2024。
[14] 劉玉雯、石桓瑜,3D 列印混凝土之力學性質,營建知訊,第483期,2023。
[15] Valente, M., Sambucci, M., Chougan, M., & Ghaffar, S.H. Composite alkali-activated materials with waste tire rubber designed for additive manufacturing: an eco-sustainable and energy saving approach. J. Mater. Res. Technol., 24, 3098-3117, 2023.
[16] 陳志賢,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木工程學系,2009。
[17] Sambucci, M., Marini, D., Sibai, A., Valente, M. Preliminary mechanical analysis of rubber-cement composites suitable for additive process construction. Journal of Composites Science, 4(3):120, 2020.
[18] Valente, M., Sambucci, M., Chougan, M., & Ghaffar, S.H. Reducing the emission of climate-altering substances in cementitious materials: a comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber. J Clean Prod, 333:130013, 2022.
[19] Youssf, O., Hassanli, R., Mills, J.E., Skinner, W., Ma, X., Zhuge, Y., et al. Influence of mixing procedures, rubber treatment, and fibre additives on rubcrete performance. Journal of Composites Science, 3(2):41, 2019.
[20] Aliabdo, A.A., Abd Elmoaty, M., & Salem, H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construct Build Mater, 121:694-703, 2016.
[21] 司雯、曹明莉、冯嘉琪,纤维增强水泥基复合材料的流动性与流变性研究进展,材料导报(A),33(3),819-825,2019。
[22] Ye, J., Cui, C., Yu, J., Yu, K., & Dong, F. Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Construction and Building Materials, 281, 122547, 2021.
[23] 中聯資源股份有限公司,https://www.chc.com.tw/。