簡易檢索 / 詳目顯示

研究生: 黃彥翔
Huang, Yen-Hsiang
論文名稱: 姿態航向參考系統研發與雙足機器人之步態規劃
Development of an Attitude and Heading Reference System and Gait Pattern Planning of a Biped Robot
指導教授: 何明字
Ho, Ming-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 177
中文關鍵詞: 步態規劃感測器融合技術姿態航向參考系統
外文關鍵詞: gait planning, sensor fusion, attitude and heading reference system
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究本實驗室先前所設計之雙足機器人的步態規劃、機器人控制系統架構和發展機器人的姿態感測器。在機器人步態規劃的部分,利用擺線輪廓曲線法為基礎以研究機器人的步態且藉由MapleSim和MATLAB軟體輔助模擬和驗證。在姿態感測器部分,以陀螺儀、加速度計及磁力計構成九軸慣性量測單元模組,透過感測器融合技術配合姿態演算法,以得到雙足機器人相對於大地座標之準確與靈敏的動態姿態。在論文中,吾人整合慣性量測單元模組與數位訊號處理器TMS320F2812完成姿態航向參考系統之建構,在感測器融合技術中,採用互補濾波器、增益調變互補濾波器和卡門濾波器,並建構一具三自由度姿態角驗證平台,以驗證姿態感測器之性能。

    The aim of this thesis is to investigate gait planning and the control architecture of a previously designed biped robot, and to develop an attitude sensor for the robot. Gait planning is based on the cycloidal profile, simulated by MapleSim and verified through MATLAB. For the attitude sensor, a nine-axis inertial measurement unit composed of a gyro, a accelerometer, and a magnetometer is used. The attitude of the biped robot can be obtained accurately by applying the sensor fusion algorithm. In this thesis, an attitude and heading reference system is developed by integrating the inertial measurement unit and a digital signal processor (TMS320F2812). The complementary filter, gain-scheduled complementary filter, and Kalman filter are adopted to the sensor fusion. The performance of the developed attitude and heading reference system is verified through the experiments conducted on a three-axis rotating platform.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 圖表目錄 XI 第一章 緒論 1-1 研究背景與動機 1-1 1-2 研究目的 1-2 1-3 研究方法及步驟 1-3 1-4 相關文獻回顧 1-5 1-5 本實驗室之相關成果 1-12 1-6 論文結構 1-13 第二章 雙足機器人系統之步態規劃與模擬 2-1 前言 2-1 2-2 雙足機器人之步態規劃 2-2 2-2-1 擺線輪廓曲線法 2-2 2-2-2 零力矩點理論與應用 2-9 2-2-3 MapleSim系統建模 2-12 2-3 模擬結果 2-17 2-4 雙足機器人控制系統架構 2-27 2-5 總結 2-28 第三章 參考座標系定義 3-1 前言 3-1 3-2 座標系統 3-1 3-2-1 本地水平座標系 3-1 3-2-2 導航座標系 3-2 3-2-3 附體座標系 3-2 3-2-4 感測器座標系 3-3 3-3 座標轉換 3-4 3-3-1 簡介 3-4 3-3-2 側滾角 3-4 3-3-3 俯仰角 3-5 3-3-4 航向角 3-5 3-4 姿態表示法 3-6 3-4-1 尤拉角法 3-6 3-4-2 四元數法 3-8 第四章 姿態感測器設計與實現 4-1 前言 4-1 4-2 慣性導航系統 4-1 4-3 三軸慣性感測器與磁力計 4-3 4-3-1 簡介 4-3 4-3-2 系統通訊協定 4-7 4-3-3 系統設置 4-11 4-4 感測器融合技術 4-13 4-4-1 簡介 4-13 4-4-2 互補濾波器 4-14 4-4-3 增益調變互補濾波器 4-16 4-4-4 卡門濾波器 4-21 4-5 姿態角計算程序 4-26 4-6 系統整合 4-34 4-6-1 簡介 4-34 4-6-2 數位訊號處理 4-34 4-6-3 周邊硬體設計 4-36 4-6-4 角度驗證平台設計 4-36 4-6-5 系統介面 4-37 第五章 實驗結果與討論 5-1 前言 5-1 5-2 感測器之校正 5-1 5-2-1 磁力計校正 5-1 5-2-2 加速度計校正 5-11 5-2-3 陀螺儀校正 5-16 5-3 姿態角量測結果與分析 5-19 5-3-1 各感測器量測姿態角結果 5-20 5-3-2 姿態航向參考系統靜態量測結果 5-24 5-3-3 姿態航向參考系統動態量測實驗結果 5-29 5-3-4 姿態航向參考系統平移加速度下動態量測實驗結果 5-39 5-3-5 姿態航向參考系統三軸同步作動量測實驗結果 5-42 5-3-6 姿態航向參考系統量測頻寬 5-51 5-4 討論與總結 5-52 第六章 結論與未來展望 6-1 結論 6-1 6-2 未來展望 6-1 參考文獻 Ref-1 附錄 A-1

    [1] 趙冠舜,「以Linux-RTAI為基礎之雙足機器人機電整合設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年。
    [2] 林子欽,「六軸力感測器研發與雙足機器人之結構分析」,國立成功大學工程科學系碩士論文,民國一○二年。
    [3] 擺線輪廓曲線,http://www.nfu.edu.tw/files/writing/193_a6050b60.pdf
    [4] Waseda robot, http://www.humanoid.waseda.ac.jp/booklet/kato_2.html
    [5] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. O. Lim, and A. Takanishi, “Development of a New Humanoid Robot WABIAN-2,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 76-81, 2006.
    [6] ASIMO robot, http://world.honda.com/ASIMO/
    [7] I. W. Park, J. Y. Kim, J. Lee, and J. H. Oh, “Mechanical Design of Humanoid Robot Platform KHR-3,” Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, pp. 321-326, 2005.
    [8] DLR-Biped, http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-6838/11291_read-25964/
    [9] AAU-BOT robot, http://www.aaubot.aau.dk/index.php
    [10] PETMAN, http://www.bostondynamics.com/robot_petman.html
    [11] Atlas, http://www.bostondynamics.com/robot_Atlas.html
    [12] MABEL, http://www.eecs.umich.edu/eecs/about/articles/2011/MABEL-runs.html
    [13] DARPA Robotics Challenge, http://www.darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_Challenge.aspx
    [14] 王紹帆,「雙足機器人的設計與實現」,國立台灣大學工學院機械工程學系碩士論文,民國九十九年。
    [15] 盧兆慶,「雙足機器人之步態規劃與感測系統建置」,國立台灣大學工學院機械工程學系碩士論文,民國九十九年。
    [16] 李泓逸,「人型機器人之全身控制與規劃」,國立台灣大學工學院機械工程學系碩士論文,民國一○一年。
    [17] T. S. Yoo, S. K. Hong, H. M. Yoon, and S. Park, “Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System,” Sensors, Vol. 11, pp. 3816-3830, 2011.
    [18] 鄭玉祥,「無人飛行載具之航電系統整合」,私立淡江大學航空太空工程學系碩士論文,民國九十八年。
    [19] 廖文選,「以DSP實現GPS與IMU感測器整合系統」,國立交通大學機械工程學系碩士論文,民國一○○年。
    [20] 賴盈誌,「無人飛行載具姿態航向參考系統之開發與驗證研究」,國立成功大學航空太空工程學系博士論文,民國九十九年。
    [21] 簡誌佑,「以Linux-RTAI為基礎之機器人足部設計與實現」,國立成功大學工程科學系碩士論文,民國一○○年。
    [22] 人類步行軌跡,http://www.clinicalgaitanalysis.com/history/ww2.html。
    [23] R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, 2nd ed., AIAA Education Series, 2003.
    [24] E. Bekir, Introduction to Modern Navigation Systems, World Scientific Publishing Company, 2007.
    [25] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, 2nd ed., IET, 2004.
    [26] O. Salychev, Applied Inertial Navigation: Problems and Solutions, BMSTU Press, Moscow, Russia, 2004.
    [27] Triaxial Inertial Sensor with Magnetometer ADIS16400/ADIS16405, http://www.analog.com/static/imported-files/data_sheets/ADIS16400_16405.pdf
    [28] C. F. Kao and T. L. Chen, “Design and Analysis of an Orientation Estimation System Using Coplanar Gyro-free Inertial Measurement Unit and Magnetic Sensors,” Sensors and Actuators A, Vol. 144, pp. 251-262, 2008.
    [29] D. Mortari, M. Angelucci, and F. L. Markley, “Singularity and Attitude Estimation,” Proceedings of the 10th Annual AIAA/AAS Space Flight Mechanics Meeting, pp. 23-26, 2000.
    [30] William Rowan Hamilton,
    http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html
    [31] H. Goldstein, Classical Mechanics, 3rd ed., Addison Wesley, 1980.
    [32] D. Koks, Explorations in Mathematical Physics, Springer, 2006.
    [33] J. S. Sochacki, The Modified Picard Method for Solving Arbitrary Ordinary and Initial Value Partial Differential Equations, James Madison University, 2008.
    [34] IEEE Std 1431–2004 Coriolis Vibratory Gyroscopes.
    [35] J. Lenz and A. S. Edelstein, “Magnetic Sensors and their Applications,” IEEE Sensors J, Vol. 6, pp. 631-649, 2006.
    [36] M. Andrejašic, MEMS Accelerometers, University of Ljubljana, Faculty for mathematics and physics, Department of Physics, 2008.
    [37] A. M. Sabatini, “Quaternion-based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing,” IEEE Transactions on Biomedical Engineering, Vol. 53, No. 7, 2006.
    [38] J. O. Smith III, Introduction to Digital Filters with Audio Applications, Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, September 2007.
    [39] 陳奕隆,「單輪車系統平衡控制之設計與實現」,國立成功大學工程科學系碩士論文,民國九十九年。
    [40] 楊宗諭,「以顏色為基礎之多相機追蹤控制系統設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年。
    [41] National Science Foundation – The President's National Medal of Science: Recipient Details: RUDOLF E. KÁLMÁN,
    http://www.nsf.gov/od/nms/recip_details.jsp?recip_id=5300000000455.html
    [42] O. Talat, “Calibrating an eCompass in the Presence of Hard and Soft-iron Interference,” Freescale Semiconductor Ltd., 2012.
    [43] B. Otto, Linear Algebra With Applications, 3rd ed., Upper Saddle River NJ, Prentice Hall, 1995.

    下載圖示 校內:2019-08-29公開
    校外:2021-08-01公開
    QR CODE