簡易檢索 / 詳目顯示

研究生: 許育銘
Shiu, Yu-Ming
論文名稱: 風力負載下太陽能板之結構分析與改善
Structural Analysis and Improvement of Solar Collector under Wind Loads
指導教授: 張克勤
Chang, Keh-Chin
鍾光民
Chung, Guang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 太陽能板風力負載ANSYS結構最佳化
外文關鍵詞: Solar Collector, Wind Loads, ANSYS, Structural Optimization
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環保與安全的考量下,傳統化石能源與核能逐漸受到抵制,再生能源近年來積極發展中。台灣地處亞熱帶、日照充足,太陽能實為最具發展潛力之再生能源,配合政府對安裝太陽能熱水器的補助,近年來民眾已廣泛使用太陽能熱水器。但台灣每年平均約有3.7個颱風侵襲,容易造成太陽能熱水器損壞,因此本研究利用有限元素分析軟體ANSYS 14.0對風力負載下之太陽能板進行結構應力分析。
    結果發現風速60 m/s、風向角135度時太陽能板會因局部強烈負壓造成不銹鋼外殼產生極大應力而造成損壞,本研究利用改變不銹鋼外殼與玻璃的厚度以及加裝支架來降低太陽能板之最大應力值以增強耐風性能。不銹鋼外殼厚度增為1.4 mm後,在風速60m/s、風向角135度之負載條件下其最大應力可由降伏強度之100.5%降為45%。玻璃之厚度減少為2.4 mm後在風速80m/s、風向角180度之負載條件下應力值約為66.7%的拉伸強度,安全性還是足夠,因此最佳之厚度配置為不銹鋼外殼1.4 mm、玻璃2.4 mm。市面上有廠商在集熱板下面中間處安裝補強支架,但分析結果發現此安裝方式無法改善太陽能板上之最大應力值,因此本研究將支架位置改為靠近負壓區域,利用最佳化得到最有效改善應力的支架布置方式,在風速60 m/s負載下不銹鋼外殼之最大應力可由降伏強度之100.5%降為63%。

    Traditional fossil fuels and nuclear energy gradually be resisted under consideration for eco-awareness and safety, while renewable energy is developed positively in recent years. Since Taiwan is located in subtropical area which has sufficient sunshine, solar energy is indeed the most promising renewable energy. With the subsidy from government for installation of solar water heater systems, solar water heater has been widely used by folks. However, there are about 3.7 typhoons, in average, attack Taiwan every year, they sometimes cause damage to the solar water heater. This study investigates the structural stress response of solar collector under wind loads by finite element analysis software ANSYS 14.0.
    The results show that solar collector fails due to the extreme stress of stainless steel shell which is caused by locally extreme negative pressure under loads of 60 m/s wind velocity and 135o wind incidence. It is found that the maximum stress of solar collector can be reduced by installing supports and changing the thicknesses of stainless steel shell and glass. By increasing the thickness of stainless steel shell, the maximum stress can be decreased from 100.5% to 45% of yielding strength under wind velocity 60 m/s and 135o wind incidence. The maximum stress of glass under wind velocity 80 m/s and 180o wind incidence is 66.7% of tensile strength when its thickness is decreased to 2.4 mm, and still within the safety concern. Therefore, the best thicknesses of stainless steel shell and glass are 1.4 mm and 2.4 mm. Some vendors installed supports in the middle of the bottom surface of solar collectors. But after simulation analysis, it is found that installing this support cannot reduce the maximum stress. So the locations of supports is changed to near the negative pressure region, it is found that the best arrangement of supports, by optimization analysis, can decrease the maximum stress of stainless steel shell from 100.5% to 63% of yielding strength.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-4 研究方法 6 第二章 理論基礎 7 2-1 有限元素法 7 2-2 ANSYS WORKBENCH有限元素分析軟體 12 2-2.1 分析流程 12 2-2.2 元素種類 15 2-3 基本理論與破壞準則 16 2-3.1 應力-應變關係曲線 16 2-3.2 降伏(破壞)準則 18 第三章 太陽能板模型之建立 21 3-1 基本材料參數 21 3-2 太陽能板模型之設計尺寸及元素類型 21 3-3 邊界條件與負載設定 21 3-3.1 接觸條件 21 3-3.2 支撐條件 22 3-3.3 負載條件 22 3-3.4 幾何非線性設定 23 3-4 元素網格劃分及收斂性分析 24 3-4.1 無導圓角之網格收斂性分析 24 3-4.2 導圓角後之網格收斂性分析 25 第四章 數值模擬分析結果 27 4-1 不同風向角之影響 27 4-2 臨界風速 28 4-3 不銹鋼外殼與玻璃之厚度最佳化 29 4-4 加裝支架限制不銹鋼外殼之變形 31 4-5 加裝導流板之影響 32 第五章 結論與建議 34 5-1 結論 34 5-2 未來工作 36 參考文獻 38 附錄:論文簡報影片HTTP://YOUTU.BE/JRNT_P27J6M 42

    [ 1 ] 太陽熱能南部檢測中心,http://solar.rsh.ncku.edu.tw/index.php
    [ 2 ] 台灣電力公司,"核能營運現況",http://www.taipower.com.tw/content/new_info/new_info-b23.aspx?LinkID=7
    [ 3 ] 台灣電力公司,"我國再生能源發電概況",http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
    [ 4 ] 成大能源研究中心 (2009),"太陽能熱水器種類",http://solar.rsh.ncku.edu.tw/t01_kind.php
    [ 5 ] 李清安、張克勤、李聰盛、鍾光民 (2005),"颱風對太陽能熱水系統裝置損壞調查剖析:海棠颱風案例",太陽能及新能源學刊,第十卷,第二期,pp. 2-5
    [ 6 ] 李清安、張克勤、李聰盛、鍾光民 (2007.8),"颱風對國內安裝使用太陽能熱水系統之損害探討",工程,第80卷,第四期,pp. 134-142
    [ 7 ] 李輝煌 (2005),ANSYS工程分析基礎與觀念,高立圖書
    [ 8 ] 周晉成 (2009),儲水桶對太陽能板空氣動力效應分析,國立成功大學航空太空工程研究所碩士論文
    [ 9 ] 修治平 (2007),導流板對不同角度集熱板之空氣動力特性研究,國立成功大學航空太空工程研究所碩士論文
    [ 10 ] 海寧市袁花鎮力美太陽能熱水器配件廠,"ML-813美力支架 - 太陽能熱水器支架不銹鋼",http://jiaxing092286.11467.com/product/1612270.asp
    [ 11 ] 財團法人成大研究發展基金會 (2011),"太陽能熱水系統補助作業與成效調查研究計畫(4/4)",經濟部能源局
    [ 12 ] 財團法人成大研究發展基金會 (2012.10),"用太陽能供熱水有效降低油料負擔",畜產報導,pp. 36-37
    [ 13 ] 陳俊谷 (2006),降低太陽能熱水器風損之實驗研究,國立成功大學航空太空工程研究所碩士論文
    [ 14 ] 陳奕潤 (2011),風洞阻塞比及自由流紊流強度對太陽能板風力負載之影響,國立成功大學航空太空工程研究所碩士論文
    [ 15 ] 陳若華 (2012),"低層建築物附屬設施之耐風性能研究",內政部建築研究所協同研究報告
    [ 16 ] 楊桂通 (1998),彈性力學,北京,高等教育出版社
    [ 17 ] 維基百科,"福島第一核電廠事故",http://zh.wikipedia.org/wiki/福岛第一核电站事故
    [ 18 ] 蕭葆羲 (2005),"5-3建築物對於環境風場氣流的影響",於 風工程,基隆市,國立海洋大學河海工程學系,pp. 5-6
    [ 19 ] 謝信良、王時鼎、鄭明典、葉天降,"百年(1897~1996)侵襲台灣颱風之統計分析",中央氣象局
    [ 20 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Specialized Meshing // MultiZone Meshing"
    [ 21 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Method Control // Setting the Method Control for Surface Bodies // Uniform Quad Method Control"
    [ 22 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Sizing Control"
    [ 23 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Local Mesh Controls // Mapped Face Meshing Control"
    [ 24 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Ease of Use Features :: 0 // Showing Mappable Faces"
    [ 25 ] ANSYS (2011), "ANSYS 14.0 HELP // Meshing User's Guide // Global Mesh Controls // Statistics Group // Mesh Metric // Skewness"
    [ 26 ] ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // BEAM188
    [ 27 ] ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SHELL181
    [ 28 ] ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // PLANE183
    [ 29 ] ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SOLID186
    [ 30 ] ANSYS (2011), "ANSYS 14.0 HELP // Element Reference // I. Element Library // SOLID187
    [ 31 ] ANSYS (2011), "ANSYS 14.0 HELP // DesignModeler User Guide // 3D Modeling // 3D Features // Blend // Fixed Radius"
    [ 32 ] ANSYS (2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Connections // Contact // Contact Settings // Definition Settings"
    [ 33 ] ANSYS (2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Applying Boundary Conditions // Types of Supports // Fixed Supports"
    [ 34 ] ANSYS (2011), "ANSYS 14.0 HELP // Mechanical Application User's Guide // Features // Applying Boundary Conditions // Types of Loads // Acceleration"
    [ 35 ] ANSYS (2011), "ANSYS 14.0 HELP // Command Reference // VII. F Commands // F"
    [ 36 ] ANSYS (2011), "ANSYS 14.0 HELP // Structural Analysis Guide // 8. Nonlinear Structural Analysis // 8.1. Causes of Nonlinear Behavior"
    [ 37 ] ANSYS (2011), "ANSYS 14.0 HELP // Theory Reference // 3. Structures with Geometric Nonlinearities // 3.1. Understanding Geometric Nonlinearities"
    [ 38 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Using Design Exploration // Design Exploration Components // Goal Driven Optimization Reference
    [ 39 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Using Design Exploration // Using Design of Experiments // Setting up your Design of Experiments
    [ 40 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Theory // Understanding Response Surfaces // Central Composite Designs
    [ 41 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Using Design Exploration // Using Goal Driven Optimization // Optimization Options // Screening
    [ 42 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Theory // Understanding Goal Driven Optimization // Goal Driven Optimization Theory // MOGA (Multi-Objective Genetic Algorithm)
    [ 43 ] ANSYS (2011), "ANSYS 14.0 HELP // Design Exploration User Guide // Theory // Understanding Goal Driven Optimization // Goal Driven Optimization Theory // Nonlinear Programming by Quadratic Lagrangian (NLPQL)
    [ 44 ] Chin-Cheng Chou (2013), "Aerodynamic Characteristics of a Model of Solar Water Heater", Doctoral Dissertation, Department of Aeronautics and Astronautics, NCKU
    [ 45 ] Eduard Ventsel, Theodor Krauthammer (2001), "7.4 LARGE-DEFLECTION THEORY OF THIN PLATES", in Thin Plates and Shells: Theory: Analysis, and Applications, New York, Marcel Dekker, p. 215
    [ 46 ] H.-H. Lee (2011), "9.1-6 Mesh with Default Settings", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 325
    [ 47 ] H.-H. Lee (2011), "1-4 Failure Criteria of Materials", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 37-43
    [ 48 ] H.-H. Lee (2011), "13.1-2 Causes of Structural Nonlinearities", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 464
    [ 49 ] H.-H. Lee (2011), "9-3 More Exercise: Convergence Study of 3D Solid Elements", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 347-358
    [ 50 ] H.-H. Lee (2011), "Stress Singularity", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 151
    [ 51 ] H.-H. Lee (2011), "Contact versus Target", in Finite Element Simulations with ANSYS Workbench 13, SDC Publications, p. 471
    [ 52 ] James M. Gere, Barry J. Goodno (2009), Mechanics of materials, 7th ed., Cengage Learning
    [ 53 ] K. Chung, K. Chang, Y. Liu, (2008), "Reduction of wind uplift of a solar collector model", Journal of Wind Engineering and Industrial Aerodynamics, Volume 96, Issues 8-9, p. 1294–1306
    [ 54 ] Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt (2002), Concepts and applications of finite element analysis, 4th ed., New York, Wiley
    [ 55 ] Wikipedia, "von Mises yield criterion", http://en.wikipedia.org/wiki/Von_Mises_yield_criterion

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE