| 研究生: |
廖頂傑 Liao, Ding-Jie |
|---|---|
| 論文名稱: |
賣家於線上拍賣之多期直購價動態定價策略 A Dynamic Pricing Strategy of Buy-it-now Price in multistage Online Auction |
| 指導教授: |
黃宇翔
Huang, Yeu-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 線上拍賣 、直購價 、動態規劃 、定價策略 |
| 外文關鍵詞: | Online auction, Direct purchase price, Dynamic planning, Pricing strategy |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電子商務的發達,改變了許多人原本的消費模式,消費者不再拘泥於在實體商店購買商品,線上購物也成為另一種消費方式的選項,於此同時網路的便捷也促成線上拍賣的隨之興起,透過線上拍賣,個人賣家或是一般店家可將欲販售之商品資訊放到第三方拍賣平台,等待競標者進入並購買,賣家於線上平台販售商品時,通常會需要設定關於商品的起標價、最小增加金額、拍賣時長以及結標方式,競標者則依據賣家所設定的規則進行自由競標,而近年來,拍賣平台為了解決賣家與競標者在獲取商品的時間壓力,提供賣家設立直購價的功能,節省買、賣雙方的交易等待時間,然而直購價的設立便形同競標價格之上限,因此如何設立直購價,使賣家能透過線上拍賣販售商品獲取最大利益,便成為賣家需要思考的主要難題。
本研究站在賣方之角度,探討賣家欲於第三方拍賣平台販售商品時,直購價設立之最佳定價策略,本研究探討之賣家為一般個人賣家且其擁有單一複數之商品,並將商品分為多期進行販售,賣家在每一期拍賣中僅會販售一項商品,在商品售出後才會舉行下一期拍賣,且在每一期之拍賣中均有多位對商品有興趣之競標者進入拍賣,競標者會根據自身對商品的認知價值進行自由下標並考慮是否使用直購價購得商品,而本研究所採用之拍賣形式為第二高價拍賣,由出價最高之競標者為得標者並付出第二高價之得標價,賣家則需透過於每期拍賣中設立不同之直購價以期獲得最大利潤,本研究以動態規劃之模型對此問題進行求解,得出賣家於每一期拍賣中之最佳直購價定價策略,使賣家獲得最大總利潤,分析結果顯示賣家之最佳直購價將隨著每一期拍賣而增加,並隨著直購價之增加賣家之利潤也可有所提升,最後與另外兩種不同販售情境進行比較,發現在不同參與拍賣人數與成本情況之下,賣家所應選擇之最佳策略會有所不同,才能使賣家獲得最大之利益
Online sales become a large share of commerce and change consumption patterns. At the same time, the convenience of the Internet has also contributed to the rise of online auctions. In recent years, the auction platform provides sellers with the function of setting a direct purchase price to save the transaction waiting time for buyers and sellers. However, the establishment of a direct purchase price is the same as the upper limit of the bid price. Therefore, how to set a direct purchase price for sellers to obtain the maximum benefit through online auctions is a major problem for sellers to consider. This study solves this problem with a dynamic programming model, and obtains the best direct purchase price pricing strategy of the seller in each auction, so that the seller can maximize its total profit. The result of the analysis shows that the optimal direct purchase price of the seller will increase with each auction, and as the direct purchase price raises, the profit of the seller can also increase. Finally, compared with two other different sales scenarios, it is found that under different circumstances costs of participating in the auction, the optimal strategy that the seller chooses will vary , so that the seller can obtain the maximum benefit.
Ariely, D., & Simonson, I. (2003). Buying, bidding, playing, or competing? Value assessment and decision dynamics in online auctions. Journal of Consumer psychology, 13(1), 113-123.
Bansal, N., Chen, N., Cherniavsky, N., Rurda, A., Schieber, B., & Sviridenko, M. (2010). Dynamic pricing for impatient bidders. ACM Transactions on Algorithms (TALG), 6(2), 35
Bajari, P., & Hortacsu, A. (2004). Economic insights from internet auctions. Journal of Economic Literature, 42(2), 457-486.
Baker, T., & Murthy, N. N. (2002). A framework for estimating benefits of using auctions in revenue management. Decision Sciences, 33(3), 385-407.
Bapna, R., Goes, P., & Gupta, A. (2003). Analysis and design of business-to-consumer online auctions. Management Science, 49(1), 85-101
Becherer, R. C., & Halstead, D. (2004). Characteristics and internet marketing strategies of online auction sellers. International Journal of Internet Marketing and Advertising, 1(1), 24-37.
Bertsimas, D., Hawkins, J., & Perakis, G. (2009). Optimal bidding in online auctions. Journal of Revenue and Pricing Management, 8(1), 21-41.
Bergemann, Dirk and Said, Maher, Dynamic Auctions: A Survey (2010). Cowles Foundation Discussion Paper No. 1757R.
Betz, R., Greiner, B., Schweitzer, S., & Seifert, S. (2017). Auction Format and Auction Sequence in Multi‐item Multi‐unit Auctions: An Experimental Study. The Economic Journal, 127(605), F351-F371
Briceño-Arias, L., Correa, J. R., & Perlroth, A. (2016). Optimal Continuous Pricing with Strategic Consumers. Management Science, 63(8), 2741-2755.
Chan, N. H., & Liu, W. W. (2017). Modeling and forecasting online auction prices: a semiparametric regression analysis. Journal of Forecasting, 36(2), 156-164.
Chen, J. R., Chen, K. P., Chou, C. F., & Huang, C. I. (2013). A Dynamic Model of Auctions with Buy‐It‐Now: Theory and Evidence. The Journal of Industrial Economics, 61(2), 393-429.
Cramton, P., & Sujarittanonta, P. (2010). Pricing rule in a clock auction. Decision Analysis, 7(1), 40-57.
Davis, A. M., Katok, E., & Kwasnica, A. M. (2011). Do auctioneers pick optimal reserve prices?. Management Science, 57(1), 177-192.
Dholakia, U. M., & Simonson, I. (2005). The effect of explicit reference points on consumer choice and online bidding behavior. Marketing Science, 24(2), 206-217.
Durham, Y., Roelofs, M. R., Sorensen, T. A., & Standifird, S. S. (2013). A laboratory study of auctions with a buy price. Economic Inquiry, 51(2), 1357-1373.
Elmaghraby, W. (2003). The importance of ordering in sequential auctions. Management Science, 49(5), 673-682.
Etzion, H., Pinker, E., & Seidmann, A. (2006). Analyzing the simultaneous use of auctions and posted prices for online selling. Manufacturing & Service Operations Management, 8(1), 68-91.
Etzion, H., & Moore, S. (2013). Managing online sales with posted price and open-bid auctions. Decision Support Systems, 54(3), 1327-1339.
Ernan, H., Peter, T. L.,& Popkowski, L. (2010).” Search and Choice in Online Consumer Auction.” Management Science, Vol. 29, No. 6, pp.1152-1164.
Gallien, J. (2006). Dynamic mechanism design for online commerce. Operations Research, 54(2), 291-310.
Gallien, J., & Gupta, S. (2007). Temporary and permanent buyout prices in online auctions. Management Science, 53(5), 814-833.
Gregg, D. G., & Walczak, S. (2008). Dressing your online auction business for success: An experiment comparing two eBay businesses. Mis Quarterly, 653-670.
Goes, P. B., Karuga, G. G., & Tripathi, A. K. (2010). Understanding willingness-to-pay formation of repeat bidders in sequential online auctions. Information Systems Research, 21(4), 907-924.
Hardesty, D. M., & Suter, T. A. (2013). Maximizing willingness to bid within “buy it now” auctions. Journal of Business Research, 66(4), 554-558.
Hidvegi, Z., Wang, W., & Whinston, A. B. (2006). Buy-price English auction. Journal of Economic Theory, 129(1), 31-56.
Katehakis, M. N., & Puranam, K. S. (2012). On bidding for a fixed number of items in a sequence of auctions. European Journal of Operational Research, 222(1), 76-84.
Kirkegaard, R., & Overgaard, P. B. (2008). Buy‐out prices in auctions: seller competition and multi‐unit demands. The RAND Journal of Economics, 39(3), 770-789.
Leszczyc, P. T. P., Qiu, C., & He, Y. (2009). Empirical testing of the reference-price effect of buy-now prices in internet auctions. Journal of Retailing, 85(2), 211-221.
Li, Z., Yue, J., & Kuo, C. C. (2018). Design of discrete Dutch auctions with consideration of time. European Journal of Operational Research, 265(3), 1159-1171.
Lucking‐Reiley, D., Bryan, D., Prasad, N., & Reeves, D. (2007). Pennies from eBay: The determinants of price in online auctions. The journal of industrial economics, 55(2), 223-233.
Milgrom, P. R., & Weber, R. J. (1982). A theory of auctions and competitive bidding. Econometrica: Journal of the Econometric Society, 1089-1122.
Onur, I., & Tomak, K. (2003). Buy-It-Now or snipe on eBay?. ICIS 2003 Proceedings, 75.
Pinker, E. J., Seidmann, A., & Vakrat, Y. (2003). Managing online auctions: Current business and research issues. Management science, 49(11), 1457-1484.
Rothkopf, M. H., & Park, S. (2001). An elementary introduction to auctions. Interfaces, 31(6), 83-97.
Roumen, V., Richard, D. S., & Karl, R. L. (2011).” Institutional dependencies in dynamic buyout price models for online auctions.” Original Article, Vol. 10, No.3, pp.351-366.
Shmuel, S. O., & Michael, H. R. (1975).” Optimal bidding in Sequential Auctions.” Operations Research, Vol. 23, No. 6, pp1080-1090.
Standifird, S. S., Roelofs, M. R., & Durham, Y. (2005). The impact of eBay's buy-it-now function on bidder behavior. international Journal of Electronic commerce, 9(2), 167-176.
Su, X. (2010). Optimal pricing with speculators and strategic consumers. Management Science, 56(1), 25-40.
Sun, D., Li, E., & Hayya, J. C. (2010). The optimal format to sell a product through the internet: Posted price, auction, and buy-price auction. International Journal of Production Economics, 127(1), 147-157.
Tucker, J. M., & Massad, V. J. (2004). Effect of buyer and seller experience on buy it now pricing. Journal of Internet commerce, 3(2), 101-115.
Tucker, J. M., & Massad, V. J. (2004). Effect of buyer and seller experience on buy it now pricing. Journal of Internet commerce, 3(2), 101-115.
Vragov, R., Shang, D., & Lang, K. R. (2010). Should Online Auctions Employ Dynamic Buyout Pricing Models?. Exploring the Grand Challenges for Next Generation E-Business, vol. 52, pp. 213-222
Vulcano, G., Van Ryzin, G., & Maglaras, C. (2002). Optimal dynamic auctions for revenue management. Management Science, 48(11), 1388-1407
Wang, S., Jank, W., & Shmueli, G. (2008). Explaining and forecasting online auction prices and their dynamics using functional data analysis. Journal of Business & Economic Statistics, 26(2), 144-160.
Wang, H. (2017). Analysis and design for multi-unit online auctions. European Journal of Operational Research, 258(3), 1191-1203
Zeithammer, R. (2006). Forward-looking bidding in online auctions. Journal of Marketing Research, 43(3), 462-476.
Zeithammer, R. (2007). Research note—strategic bid-shading and sequential auctioning with learning from past prices. Management Science, 53(9), 1510-1519.
Zeithammer, R. (2007). Research Note—Optimal Selling in Dynamic Auctions: Adaptation Versus Commitment. Marketing Science, 26(6), 859-867.
Zhong, H. (2010). Buy-price auction: A distributional approach. Economics Letters, 107(3), 345-349.