| 研究生: |
林建廷 Lin, Chien-Ting |
|---|---|
| 論文名稱: |
先進應變工程及完全金屬矽化閘極應用於奈米金氧半電晶體的之研究 The Study of Advanced Strain Engineering andFUSI-gate for Nano Meter CMOSFET Technology Applications |
| 指導教授: |
葉文冠
Yeh, Wen-Kuan 方炎坤 Fang, Yean-Kuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 金氧半電晶體 、金屬矽化閘極 |
| 外文關鍵詞: | CMOSFET, 90nm, FUSI-gate |
| 相關次數: | 點閱:158 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor)的尺寸進入奈米等級時,為增進元件性能,提昇載子的移動率,應變工程 (Strain engineering)已漸成為量產的必要技術。 本論文中對應變工程做更完整的探討,並首度提出數種新的先進應變工程方法。除外,金屬閘極 (metal gate) 亦是奈米等級電晶體量產必要技術之一,在此我們也提出一簡單製作金屬矽化閘極之技術,此技術非常符合奈米等級IC製程。本研究並將吾人研發的先進應變工程 (Strain engineering)及完全金屬矽化(Fully Silicided, FUSI) 閘極運用於提昇奈米金氧半導體元件之特性以驗証其實用性。
首先探討應力技術對元件的效能之影響,包括金屬矽化閘極之相位變換(phase transfer)感應應力, 二次應力技術(second CESL)感應應力,以及CESL 移除所遺留之感應應力。接著,我們提出一簡單之金屬矽化閘極上製程技術配合矽能帶邊緣功函式 (band-edge work functions)同時完成N/PMOSFET 元件之設計。然後在實驗中,探討CESL 應力對部分空乏型矽絕緣層金氧半電晶體元件PD-SOI (partially depleted silicon-on-insulator)特性的影響,經由電性與模擬分析,探討不同矽厚度TSI (SOI silicon thickness) 對元件特性的影響。除外這些結果對完全空乏型矽絕緣層金氧半電晶體元件FD-SOI (fully depleted SOI) 與多閘極multi-gate MOFET 之設計也有幫助。另外我們並探討淺溝槽絕緣層
(Shallow trench Isolation (STI)) 應力對元件遷移率(Mobility)之影響,結果發現STI 與 CESL stress 在不同擴散長度 LOD (length of diffusion)下對N/PMOSFET 的遷移率有不同之影響。最後,我們製作結合CESL應變技術與凹陷式閘極(Notched-Gate)技術的金氧半電晶體,分別探討不同閘極結構對於元件特性的影響。實驗証實,應用了CESL 應變技術及Notched-Gate 結構的元件其特性皆優於傳統閘極元件。
In this dissertation, we study the impact of strain engineering and FUSI-gate technologies on nano meter scale MOSFETs performances in detail. The study is divided in five parts. First, we propose three types of the new strain engineering in FUSI-gate MOSFET. Three strain sources on FUSI are studied and analyzed, including enveloped FUSI phase transfer induced stress, the second-CESL induced stress, and the first CESL on poly-gate top
removed by FUSI CMP. Second, we propose a simple CMOS FUSI process, which has the work function near to the N or PMOSFET band-edge, and is fully compatible with the conventional CMOSFET technology. Third, we extensively investigate the impact of CESL strain engineering on the PD-SOI (partially depleted silicon-on-insulator) devices with various TSI (SOI silicon thickness). We found the related device characteristics are supported by (IV)
simulation data. Besides, the results are also important for the study of CESL strain engineering on FD-SOI (fully depleted SOI) and multi-gate MOFET design. Fourth, we study the interactions of STI stress with various mobility
enhancement approaches systematically. The interaction between STI (shallow trench isolation) stress and CESL stress is significant, and results in a different LOD (length of diffusion) mobility trend for NMOSFET and
PMOSFET, respectively. Finally, impacts of the notched-gate structure on contact etch stop layer (CESL) stressed 90nm NMOSFET were studied in detail. Based on both of simulation and measurement, a notched-gate structure
with the high tensile-stress CESL enhances the driving capability, SCE, and DIBL of the device but without increasing the leakages obviously.
[1] G. G. Shahidi, “Challenges of CMOS Scaling at below 0.1µm”, The 12th International Conference on Microelectronics, pp. 5-8, 2000
[2] P. M. Zeitzoff, “MOSFET Scaling Trends and Challenges Through The End of The Roadmap”, Proc. of IEEE Custom Integrated Circuit Conference, pp. 233-240, 2004.
[3] Y. Taur, “CMOS Scaling Beyond 0.1 µm: How Far Can It Go?”, VLSI Symp. Tech. Dig., pp. 6-9, 1999.
[4] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, "Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric", IEE Electronic Letters, vol. 21, no. 11, pp. 540-542, 2000.
[5] S. Song, J. H. Yi, W. S. Kim, J. S. Lee, K. Fujihara, H. K. Kang, J. T. Moon, and M. Y. Lee, “,CMOS Device Scaling Beyond 100nm”, IEDM Tech. Dig., pp. 235-238, 2000.
[6] S. Song, W. S. Kim, J. S. Lee, T. H. Choe, J. H. Choi, M. S. Kang, U. I. Chung, N. I. Lee, K. Fujihara, H. K. Kang, S. I. Lee, and M. Y. Lee, “Design of Sub-l00nm CMOSFETs: Gate Dielectrics and Channel Engineeringv”, VLSI Symp. Tech. Dig., pp. 190-191, 2000
[7] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stealer, S. Tyagi, and M. Bohr, "Scaling Challenges and Device Design Requirements for High Performance Sub-50 nm Gate Length Planar CMOS Transistors", VLSI Symp. Tech. Dig., pp. 174-175, 2000.
[8] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, and C. Hu, "Scaling Limit of Silicon Nitride Gate Dielectric for Future CMOS Technologies", Proc. of Device Research Conference, pp. 65-66, 2000.
[9] S. Yang, “High Performance Logic Technology-Scaling Trend and Future Challenges”, Proc. ICSICT Tech. Dig., pp. 62-67, 2001.
[10] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, "Limits of Gate-Oxide Scaling in Nano-Transistors", VLSI Symp. Tech. Dig., pp. 90-91, 2000.
[11] Mark Rodder, “45nm CMOS: Device Architecture & Roadmap”, IEEE International Electron Devices Meeting short course, pp. 8, 2005.
[12] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. Mansy, “ A 90-nm Logic Technology Featuring Strained-Silicon”, IEEE Trans. on Electron Devices, vol.51, no.11, pp.1790-1797, 2004.
[13] L. Collins, “Silicon Talks the Strain”, IEE Review, vol. 49, Issue. 11, pp, 46-49, 2003.
[14] M. D. Giles, M. Armstrong, C. Auth, S. M. Cea, T. Ghani, T. Hoffmann, R. Kotlyar, P. Matagne, K. Mistry, R. Nagisetty, B. Obradovic, R. Shaheed, L. Shifren, M. Stettler, S. Tyagi, X. Wang, C. Weber, and K. Zawadzki, "Understanding Stress Enhanced Performance in Inetl 90nm CMOS Technology", VLSI Symp. Tech. Dig., pp. 118-119, 2004.
[15] J. W. Pan, P. W. Liu, T. Y. Chang, W. T. Chiang, C. H. Tsai, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien and S. W. Sun, “Mobility and Strain Effects on <110>/(110) SiGe channel pMOSFETs for High Current Enhancement”, IEDM Tech. Dig., pp. 118-121,2006.
[16] International Technology Roadmap for Semiconductors, 2005.
[17] J. C. Yu, B. C. Lai, and J. Y. M. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide", IEEE Electron Device Letters, vol. 21, no. 11, pp. 537-539, 2000.
[18] B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, "A 1.1 nm Oxide Equivalent Gate Insulator Formed Using TiO2 on Nitrided Silicon," IEDM Tech. Dig., pp. 1038-1040,1998.
[19] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, "Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Å," IEEE Electron Device Letters, vol. 21, no. 7, pp. 341-343, 2000.
[20] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, "High-k Gate Dielectrics with Ultra-Low Leakage Current Based on Praseodymium oxide," IEDM Tech. Dig., pp. 653-656, 2000.
[21] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Teon, K. Onishi, T. Ngai, S. Banerjee and J.C. Lee, 'MOSCAP and MOSFET Characteristics Using ZrO2 Gate Dielectric Deposited Directly on Si ," IEDM Tech. Dig., pp. 145-148, 1999.
[22] N. Zhan, K. L. Ng, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Characteristics of High Quality Hafnium Oxide Gate Dielectric," Proc. of IEEE Electron Devices Meeting, pp. 43-46, 2002.
[23] K. L. Ng, N. Zhan, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Electrical Characteristics of Novel Hafnium Oxide Film," Proc. of IEEE Electron Devices Meeting, pp. 51-54, 2002.
[24] H. R. Harris, P. Kalra, P. Majhi, M. Hussain, D. Kelly, J. Oh, D. He, C. Smith, J. Barnett, P. D. Kirsch, G. Gebara, J. Jur, D. Lichtenwalner, A. Lubow, T. P. Ma, G. Sung, S. Thompson, B. H. Lee, H. H. Tseng, and R. Jammy, “Band-Engineered Low PMOS VT with High-K/Metal Gates Featured in a Dual Channel CMOS Integration", VLSI Symp. Tech. Dig., pp. 154-155, 2007.
[25] W. S. Hwang, C. Shen, X. P. Wang, S. H. Chan, and B. J. Cho, “A Novel Hafnium Carbide (HfCx) Metal Gate Electrode for NMOS Device Application", VLSI Symp. Tech. Dig., pp. 156-157, 2007.
[26] A. Shickova, T. Kauerauf, A. Rothschild, M. Aoulaiche, S. Sahhaf, B. Kaczer, A. Veloso, C. Torregiani, L. Pantisano, A. Lauwers, M. Zahid, T. Rost, H. Tigelaar, M. Pas, J. Fretwell, J. McCormack, T. Hoffmann, C. Kerner, T. Chiarella, S. Brus, Y. Harada, M. Niwa, V. Kaushik, H. Maes, P. P. Absi, G. Groeseneken, S. Biesemans and J. A. Kittl, “Addressing Key Concerns for Implementation of Ni FUSI into Manufacturing for 45/32 nm CMOS", VLSI Symp. Tech. Dig., pp. 158-159, 2007.
[27] H. C. Wen, S. C. Song, C. S. Park, C. Burham, G. Bersuker, K. Choi, M. A. Q. Lopez, B. S. Ju, H. N. Alshareef, H. Niimi., H. B. Park., P. S. Lysaght, P. Majhi., B. H. Lee, and R. Jammy, “Gate First Metal-Aluminum-Nitride PMOS Electrodes for 32nm Low Standby Power Applications", VLSI Symp. Tech. Dig., pp. 160-161, 2007.
[28] M. Chudzik, B. Doris, R. Mo, J. Sleight, E. Cartier, C. Dewan, D. Park, H. Bu, W. Natzle, W. Yan, C. Ouyang2, K. Henson, D. Boyd, S. Callegari, R. Carter, D. Casarotto, M. Gribelyuk, M. Hargrove, W. He, Y. Kim, B. Linder, N. Moumen, V.K. Paruchuri, J. Stathis, M. Steen2, A. Vayshenker, X. Wang2, S. Zafar, T. Ando, R. Iijima, M. Takayanagi, V. Narayanan, R. Wise, Y. Zhang, R. Divakaruni, M.Khare, T.C. Chen,” High-Performance High-K/Metal Gates for 45nm CMOS and Beyond with Gate-First Processing", VLSI Symp. Tech. Dig., pp. 194-195, 2007.
[29] A. Lauwers, A. Veloso, T. Hoffmann, M. J. H. van Dal, C. Vrancken, S. Brus, S. Locorotondo, J.-F. de Marneffe, B. Sijmus, S. Kubicek, T. Chiarella, M. A. Pawlak, K. Opsomer, M. Niwa, R. Mitsuhashi, K. G. Anil, H.Y. Yu, C. Demeurisse, R. Verbeeck, M. de Potter, P. Absil, K. Maex, M. Jurczak, A. Kittl, “CMOS Integration of Dual Work Function Phase Simultaneous Silicidation of NMOS (NiSi) and PMOS Gate on HfSiON”, IEDM Tech. Dig., pp. 661-664, 2005.
[30] A. Steegen and K. Maex, “Silicide-Induced Stress in Si: Origin and Consequences for MOS Technologies”, Materials Science and Engineering, Vol. 38, No. 1, pp. 1-53, 2002.
[31] C. Detavernier, C. Lavoie, and F. M. d’Heurle, “Thermal Expansion of the Isostructural PtSi and NiSi: Negative Expansion Coefficient in NiSi and Stress Effects in Thin Films”, J. Appl. Phys., Vol. 93, pp. 2510-2515, 2003.
[32] K. Ota, K. Sugihara, H. Sayama, T. Uchida, H. Oda, T. Eimori, H. Morimoto, and Y. Inoue, “Novel Locally Strained Channel Technique for High Performance 55 nm CMOS”, IEDM Tech. Dig., pp. 27–30, 2002.
[33] D. Aime, B. Froment, F. Cacho, V. Carron, S. Descombes, Y. Morand, N. Emonet, F. Wacquant, T. Farjot, S. Jullian, C. Laviron, M. Juhel, R. Pantel, R. Molins, D. Delille, A. Halimaoui, D. Bensahel, and A. Souifi, “Work Function Tuning Through Dopant Scanning and Related Effects in Ni Fully Silicided Gate for Sub-45nm Nodes CMOS”, IEDM Tech. Dig., pp. 87-90, 2004.
[34] Synopsys California Northwest Sales Office, CA94043,USA.
[35] C. Cabral, Jr., J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A. Steegen, P. Kozlowski, R. Carruthers, and R. Jammy, “Dual Workfunction Fully Silicided Metal Gates”, VLSI Tech Dig., pp. 184-185, 2004.
[36] J. A. Kittl, A. Lauwers, T. Hoffmann, A. Veloso, S. Kubicek, M. Niwa, M. J. H. van Dal, M. A. Pawlak, C. Demeurisse, C. Vrancken, B. Brijs, P. Absil, and S. Biesemans “Linewidth Effect and Phase Control in Ni Fully Silicided Gates”, IEEE Electron Device Lett., Vol. 27, no. 8, pp. 647–650, 2006.
[37] C. Ren, S. H. Chan, M. F. Li, W. Y. Loh, S. Balakumar, C. H. Tung, N. Balasubramanian, and D. L. Kwong, “Work Function Tuning and Material Characteristics of Lanthanide-Incorporated Metal Nitride Gate Electrodes for NMOS Device Applications”, IEEE Transactions on Electron Device, Vol. 53, No. 8, 2006.
[38] P. F. Hsu, Y. T. Hou, F. Y. Yen, V. S. Chang, P. S. Lim, C. L. Huang, L. G. Yao, J. C. Jiang, H. J. Lin, J. M. Chiou, K. M. Yin, J. J. Lee, R. L. Hwang, Y. Jin, S. M. Chang, H. J. Tao, S. C. Chen, M. S. Liang, and T. P. Ma, “Advanced Dual Metal Gate MOSFETs withHigh-k Dielectric for CMOS Application”, VLSI Tech. Dig., pp. 14-15, 2006.
[39] C. T. Lin, C. H. Hsu, L. W. Chen, T. F. Chen, C. R. Hsu, C. H. Lin, S. Chiang, D. C. Cho, C. T. Tsai, and G. H. Ma, “Novel FUSI Strained Engineering for 45-nm Node CMOS Performance Enhancement”, VLSI Tech. Dig., pp. 114-115, 2006.
[40] H. Y. Yu, J. A. Kittle, A. Lauwers, R. Singanamalla, C. Demeurisse, S. Kubicek, E. Augendre, A. Veloso, S. Brus, C. Vrancken, T. Hoffmann, S. Mertens, B. Onsia, R. Verbeeck, M. Demand, A. Rothchild, B. Froment, M. van Dal, K. De. Meyer, M.F. Li, J. D. Chen, M. Jurczak, P. P. Absil, and S. Biesemans, “Demonstration of a New Approach towards 0.25V Low-Vt CMOS using Ni-based FUSI”, VLSI Tech. Dig., pp. 120-121, 2006.
[41] R. Ranade, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren, M. Stettler, K. Tone, S. Tyagi, and M. Bohr, “High Performance 35nm LGATE CMOS Transistors Featuring NiSi Metal Gate (FUSI), Uniaxial Strained Silicon Channels and 1.2nm Gate Oxide”, IEDM Tech Dig., pp. 227-230, 2005.
[42] J. R. Hauser and K. Ahmed, “Characterization of Ultra-Thin Oxides Using Electrical C–V and I–V Measurements”, Proc. AIP Conf., pp.235–239, 1998.
[43] P. Sivasubramsni, T. S. Boscke, J. Huang, C. D. Young, P. D. Kirsch, S. A. Krishnan, M. A. Quevedo-Lopez, S. Govindarajan, B. S. Ju, H. R. Harris, D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, J. Kim, B. E. Gnade, R. M. Wallace, G. Bersuker, B. H. Lee, and R. Jammy, “Dipole Moment Model Explaining nFET Vt Tuning Utilizing La, Sc, Er, and Sr Doped HfSiON Dielectrics”, VLSI Tech. Dig., pp. 68-69, 2007.
[44] D. Greenlaw, G. Burbach, T. Feudel, F. Feustel, K. Frohberg, F. Graetsch, G. Grasshoff, C. Hartig, T. Heller, K. Hempel, M. Horstmann, P. Huebler, R. Kirsch, S. Kruegel, E. Langer, A. Pawlowitsch, H. Ruelke, H. Schuehrer, R. Stephan, A. Wei, T. Werner, K. Wieczorek, and M. Raab, “Taking SOI Substrates and Low-k Dielectrics into High-Volume Microprocessor Production”, IEDM Tech. Dig., pp. 11.1.1-11.1.4, 2003.
[45] A. Wei and D. A. Antoniadis, “Design Methodology for Minimizing Hysteretic V,-Variation in Partially-Depleted SO1 CMOS”, IEDM Tech. Dig., pp. 411-414, 1997.
[46] T. Tsuchiya, Y. Sato, and M. Tomizawa, “Three Mechanisms Determining Short-Channel Effects in Fully-Depleted SOI MOSFET’s”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 5, pp. 1116-1121, 1998.
[47] T. Irisawa, T. Numata, T. Tezuka, K. Usuda, S. Nakaharai, N. Hirashita, N. Sugiyama, E. Toyoda, and S. I. Takagi, “High Performance Multi-Gate pMOSFETs using Uniaxially-Strained SGOI Channels”, IEDM Tech. Dig., pp. 30.1.1-30.1.4, 2005.
[48] K. Eneman, G. Jurczak, M. Verheyen, P. Hoffmann, T. De Keersgieter, A. De Meyer, “Scalability of strained nitride capping layers for future CMOS generations”, Solid-State Device Research Conference, Proceedings of 35th European, pp. 449-452, 2005.
[49] N. Collaert, A. D. Keersgieter, K.G. Anil, R. Rooyackers, G. Eneman, M. Goodwin, B. Eyckens, E. Sleeckx, J. F. Marneffe, K. Meyer., P. Absil., M. Jurczak, S. Blesemans, “Performance improvement of tall triple gate devices with strained SiN layers”, IEEE Electron Device Letters, Vol. 26, pp. 820-822.
[50] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Ghani, T. Ghani, T. Hoffmann, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “ Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology”, VLSI Tech Dig., pp. 50-51, 2004.
[51] T. Sanuki, A. Oishi, Y. Morimasa, S. Aota, T. Kinoshita, R. Hasumi, Y. Takegawa, K. Isobe, H. Yoshimura, M. Iwai, K. Sunouchi, and T. Noguchi, “ Scalability of Strained Silicon CMOSFET and High Drive Current Enhancement in the 40nm Gate Length Technology”, IEDM Tech. Dig., pp. 65-68, 2003.
[52] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress”, IEDM Tech. Dig., pp. 827-830, 1999.
[53] T. Okagaki, M. Tanizawa, T. Kunikiyo, K. I. Sonoda, M. Igarashi, K. Ishikawa, T. Takeda, P. Lee, and G. Yokomizo, “Direct Measurement of Stress Dependent Inversion Layer Mobility Using a Novel Test Structure”, VLSI Tech Dig., pp. 120-121, 2004.
[54] K. Matsuda, K. Suzuki, K. yamamura, and Y. Kanda, “Nonliner piezoresistance effects in silicon”, J. Appl. Phys., Vol.73, NO. 4, pp. 1838-1847, 1993.
[55] C.-H. Ge, C.-C. Lin, C.-H. Ko, C.-C. Huang, Y.-C. Huang, B.-W. Chan, B.-C. Perng, C.-C. Sheu, P.-Y. Tsai, L.-G. Yao, C.-L. Wu, T.-L. Lee, C.-J. Chen, C.-T. Wang, S.-C. Lin, Y.-C. Yeo and C. Hu, “Process-Strained Si (PSS) CMOS Technology Featuring 3D Strain Engineering,” IEDM Tech. Dig., pp. 73-76, 2003.
[56] W. Zhao, J. He, R.E. Belford, L.E. Wernersson, and A. Seabaugh, “Partially Depleted SOI MOSFETs Under Uniaxial Tensile Strain,” IEEE Trans Electron Devices, Vol.51, NO. 3, pp. 317-323, 2004.
[57] T. Ghani, M. Armstrong, C. Auth, M.Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyor, J. Liaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M. Bohr, “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors,” IEDM Tech. Dig., pp. 978-980, 2003.
[58] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matusuka, N. Nagashima and T. Noguchi, “Mobility Improvement for 45nm Node by Combination of Optimized Stress Control and Channel Orientation Design,” in IEDM Tech. Dig., 2004, pp. 217-220.
[59] T. Matsumoto, S. Maeda, H. Dang, T. Uchida, K. Ota, T. Hirano, H. Sayama, T. Iwamatsu, T. Ipposhi, H. Oda, S. Maegawa, Y. Inoue, and T. Nishimura, “Novel SOI Wafer Engineering Using Low Stress and High Mobility CMOSFET with <100> Channel for Embedded RF/Analog Applications,” IEDM Tech. Dig., pp. 663-666, 2002.
[60] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A Novel Strain Enhanced CMOS Architecture Using Selectively Deposited High Tensile and High Compressive Silicon Nitride Films”, IEDM Tech. Dig., pp. 216-216, 2004.
[61] K. Goto, S. Satoh, H. Ohta, S. Fukuta, T. Yamamoto, T. Mori, Y. Tagawa, T. Sakuma, T. Saiki, Y. Kim, H. Kokura, N. Tamura, N. Horiguchi, M. Kojima, T. Sugii, and K. Hashimoto, ”Technology Booster using Strain-Enhancing Laminated SiN (SELS) for 65nm Node HP MPUs,” IEDM Tech. Dig., pp. 209-212, 2004.
[62] T. Ghani, S. Ahmed, P. Aminzadeh, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P. Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan#, J. Sebastian, M. Taylor, J. Tsai, S. Tyagi, S. Yang, M. Bohr, “100nm Gate Length High Performance/Low Power CMOS Transistor Structure”, IEDM Tech. Dig., pp. 415-418, 1999.
[63] Y. C. Liu, J. W. Pan, T. Y. Chang, P. W. Liu, B. C. Lan, C. H. Tung, C. H. Tsai, T. F. Chen, C. J. Lee, W. M. Wang, Y. A. Chen, H. L. Shih, L. Y. Tung, L. W. Cheng, T. M. Shen, S. C. Chiang, M. F. Lu, W. T. Chang, Y. H. Luo, D. Nayak, D. Gitlin, H. L. Meng, and C. T. Tsai, “Single Stress Liner for Both NMOS and PMOS Current Enhancement by a Novel Ultimate Spacer Process,” IEDM Tech. Dig., pp. 836-839, 2005.
[64] D. Wu, P E. Hellberg, S L. Zhang, and M. Ostling, “Notched sub-100nm gate MOSFETs for analog applications”, Proc. SSIC Tech. Dig., pp. 539-542, 2001.
[65] S. Pidin, H. Shido, T. Yamamoto, N. Horiguchi, H. Kurata, and T. Sugii, “Experimental and Simulation Study on Sub-50nm CMOS Design”, VLSI Symp. Tech. Dig., pp. 35-36, 2001.
[66] S. S. Chung, S. J. Chen, C.-K. Yang, S. M. Cheng, S. H. Lin, Y. C. Sheng, H. S. Lin, K. T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and F. Wen, “A Novel and direct Determination of the Interface Traps in Sub-100nm CMOS Devices with Direct Tunneling Regime (12~16 Å) Gate Oxide”, VLSI Symp. Tech. Dig., pp. 74-75, 2002.
[67] M. H. Tsai, and T. P. Ma, “1/f noise in hot-carrier damaged MOSFET's: effects of oxide charge and interface traps”, IEEE Electron Device Lett., vol. 14, pp, 256-258, 1993.
[68] M. Kadoshima, Y. Sugita, K. Shiraishi, H. Watanabe, A. Ohta, S. Miyazaki, K. Nakajima, T. Chikyow, K. Yamada, T. Aminaka, E. Kurosawa, T. Matsuki, T. Aoyama, Y. Nara, Y. Ohji, “Fermi-level Pinning Position Modulation by Al-Containing Metal Gate for Cost-Effective Dual-Metal/Dual-High-K CMOS", VLSI Symp. Tech. Dig., pp. 66-67, 2007.
[69] P. Sivasubramani, T. S. Böscke, J. Huang, C. D.Young, P. D. Kirsch, S. A. Krishnan, M. A. Quevedo-Lopez, S. Govindarajan, B. S. Ju, H. R. Harris, D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, J. Kim, B. E. Gnade, R. M. Wallace, G. Bersuker, B. H. Lee, and R. Jammy, “Dipole Moment Model Explaining nFET Vt Tuning Utilizing La, Sc, Er, and Sr Doped HfSiON Dielectrics", VLSI Symp. Tech. Dig., pp. 68-69, 2007.
[70] K. Iwamoto, A. Ogawa, Y. Kamimuta, Y. Watanabe, W. Mizubayashi, S. Migita, Y. Morita, M. Takahashi, H. Ito, H. Ota, T. Nabatame, and A. Toriumi, “Re-examination of Flat-Band Voltage Shift for High-k MOS Devices”, VLSI Symp. Tech. Dig., pp. 70-71, 2007.
[71] K. Akiyama, W. Wang, W. Mizubayashi, M. Ikeda, H. Ota, T. Nabatame and A. Toriumi, “VFB Roll-off in HfO2 Gate Stack after High Temperature Annealing Process - A Crucial Role of Out-diffused Oxygen from HfO2 to Si”, VLSI Symp. Tech. Dig., pp. 72-73, 2007.
[72] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Estimation of the Effects of Remote Charge Scattering on Electron Mobility of n-MOSFET’s with Ultrathin Gate Oxides”, IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 440-447, 2000.
[73] S. Inumiya, Y. Akasaka, T. matsuki, F. Ootsuka, K. Torii, and Y. Nara, “A Thermally-Stable Sub-0.9nm EOT TaSix/HfSiON Gate Stack with High Electron Mobility, Suitable for Gate-First Fabrication of hp45 LOP Devices”, IEDM Tech. Dig., pp. 23-26, 2005.
[74] Y. T. Hou, F. Y. Yen, P. F. Hsu, V. S. Chang, P. S. Lim, C. L. Hung, L. G. Yao, J. C. Jiang, H. J. Lin, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen and M. S. Liang, “High Performance Tantalum Carbide Metal Gate Stacks for nMOSFET Application”, IEDM Tech. Dig., pp. 31-34, 2005.
[75] R. I. Hegde, D. H. Triyoso, P. J. Tobin, S. Kalpat, M. E. Ramon, H. H. Tseng, J. K. Schaeffer, E. Luckowski, W. J. Taylor, C. C. Capasso, D. C. Gilmer, M. Moosa, A. Haggag, M. Raymond, D. Roan, J. Nguyen, L. B. La, E. Hebert, R. Cotton, X. D. Wang, S. Zollner, R. Gregory, D. Werho, R. S. Rai, L. Fonseca, M. Stoker, C. Tracy, B. W. Chan, Y. H. Chiu, and B. E. White,“Microstructure Modified HfO2 Using Zr Addition with TaxCy Gate for Improved Device Performance and Reliability”, IEDM Tech. Dig., pp. 35-38, 2005.
[76] R. Jha, B. Lee, B. Chen, S. Novak, P. Majhi1, and V. Misra, “Dependence of PMOS Metal Work Functions on Surface Conditions of High-K Gate Dielectrics”, IEDM Tech. Dig., pp. 43-46, 2005.
[77] D. Pham, L. Larson, and J. W. Yang, “FINFET Device Junction Formation Challenges”, Int. Workshop on Junction Technology, pp. 73-77, 2006
[78] N. Collaert, S. Brus, A. D. Keersgieter, A. Dixit, I. Ferain, M. Goodwin, A. Kottantharayil, R. Rooyackers, P. Verheyen, Y. Yim, P. Zimmerman, S. Beckx, B. Degroote, M. Demand, M. Kim, E. Kunnen, S. Locorotondo, G. Mannaert, F. Neuilly, D. Shamiryan, C. Baerts, M. Ercken, D. Laidlcr, F. Leys, R. Loo, J. Lisoni, J. Snow, R. Vos, W. Boullart, I. Pollentier, S. D. Gendt, K. D. Meyer, M. Jurczak, and S. Biescmans, “Integration Challenges for Multi-Gate Devices”, Int. Conf. on Integrated Circuit Design and Technology, pp. 187-194, 2005.
[79] L. Risch, “Pushing CMOS Beyond the Roadmap”, Proc. of ESSDERC, pp. 63-68, 2005.
[80] E. J. Nowak, T. Ludwig, I. Aller, J. Kedzierski, M. Ieong, B. Rainey, M. Breitwisch, V. Gemhoefer, J. Keinert, D. M. Fried, “Scaling Beyond the 65 nm Node with FinFET-DGCMO