| 研究生: |
李亦筑 Li, Yi-Chu |
|---|---|
| 論文名稱: |
洗腎病人動靜脈瘻管狹窄狀態下血液動力學及其音頻訊號變因探討 Evaluation of Arteriovenous Shunt Stenosis induced Phonographic Signal on Hemodynamics in Hemodialysis Patients |
| 指導教授: |
尤芳忞
Yu, Fan-Ming |
| 共同指導教授: |
甘宗旦
Kan, Chung-Dann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 洗腎瘻管 、血管血流監聽法 、瘻管阻塞 、短時距傅立葉轉換 |
| 外文關鍵詞: | arteriovenous shunt (AVS), phonoangiographic signal, AVS stenosis, Fast Fourier transform |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
末期腎臟病患者在進行血液透析治療時,需要一條血液通路提供足夠的血流量通過,此通路稱為動靜脈瘻管,而此通路使用一段時間後,可能致使病理變化發生,例如:血管內膜增生及血栓的形成,會使得動靜脈瘻管功能失效。動靜脈通路可以透過觸診感覺顫動與脈動、聽診器、血管超音波或血管造影來做阻塞情況評估。雖然超音波檢測是一種有效的非侵入式技術,對於動靜脈通路預測有著高度的準確性,但是此種技術需要依賴醫院儀器與專業技術人員的操作。因此,本研究希望發展一種血管血流監聽檢測法(Phonoangiography),可以做到居家照護及方便、立即檢測的系統。動靜脈通路的發生阻塞情形對於血行動力參數與聲音訊號會有明顯的影響。因此,在這項實驗研究中建立了一套簡化人體複雜循環的雙迴路系統。根據阻塞程度的變化與固定音訊量測點做了一連串的分析,希望能在未來的居家與臨床的血管血流監聽檢測法系統找到決定性的參數與規則。經過一連串的實驗與驗證後,發現其血行動力參數包含病灶處壓力與流量相對於阻塞程度之斜率改變處為阻塞程度(degree of stenosis, DOS)在85 - 90 %區間,這可以解釋為何臨床上都會建議患者在洗腎瘻管達到此阻塞程度時進行手術修復瘻管功能。此外在血管血流監聽檢測法的部分,亦發現有類似的趨勢。隨著DOS的增加其音訊頻譜分析後的第三峰值及第三峰值能量積分值增加,到了DOS 85 %之後斜率明顯改變,結果顯示音頻方面的第三峰值分析方法的確可以用來進行評估瘻管阻塞情形的參考指標。
This study has developed a Phonoangiography method for using in a home-based care system to evaluating arteriovenous shunt (AVS) stenosis in hemodialysis patients. Phonoangiography is a noninvasive tool for auditing the local fluid motion in the narrowed arteries and the assessing arterial dysfunction. A bruit spectral analysis could be considered a valuable noninvasive method for quantifying the severity of vessel stenosis. A specific mock model has been set up to simplify the modeling of blood flow condition and to analyze the spectrum. It follows that a more precise relationship of phonography to stenotic lesions can be observed.
[1]A. J. Collins, R. N. Foley, B. Chavers, D. Gilbertson, C. Herzog, K. Johansen, B. Kasiske, N. Kutner, J. Liu, W. S. Peter, H. Guo, S. Gustafson, B. Heubner, K. Lamb, S. Li, S. Li, Y. Peng, Y. Qiu, T. Roberts, M. Skeans, J. Snyder, C. Solid, B. Thompson, C. Wang, E. Weinhandl, D. Zaun, C. Arko, S. C. Chen, F. Daniels, J. Ebben, E. Frazier, C. Hanzlik, R. Johnson, D. Sheets, X. Wang, B. Forrest, E. Constantini, S. Everson, P. Eggers, L. Agodoa “USRDS 2012 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States”, American J. Kidney Diseases, vol.59, pp. 342, 2012.
[2]健保推動慢性腎臟病照護計畫,已獲初步成效,衛生服務部新聞,中華民國102年11月19日, http://www.mohw.gov.tw/CHT/
Ministry/DM2_P.aspx?f_listno=7&fod_list_no=4259&doc_no=33694
[3]National Kidney Foundation, K/DOQI clinical practice guidelines for chronic kidney disease, 2002.
[4]Wouter Huberts, Personalized computational modeling of vascular access creation, Proefschriftmaken.nl, 2012.
[5]M. Tonelli, M. James, N. Wiebe, K. Jindal, and B. Hemmelgarn “Ultrasound Monitoring to Detect Access Stenosis in Hemodialysis Patients: A Systemic Review”, American Journal of Kidney Diseases, vol. 51, no. 4, pp. 630-640, 2008.
[6]S. O. Trerotola, P. J. Scheel Jr, N. R. Powe, C. Prescott, N. Feeley, J. He, A. Watson “Screening for dialysis access graft malfunction: Comparison of physical examination with US” Journal of Vascular and interventional Radiology, vol. 7, pp. 15-20, 1996.
[7]J. L. Semmlow, Biosignal and Medical Image Processing, CRC Press, 2004.
[8] P. O. Vesquez, M. M. Marco, B. Mandersson “Arteriovenous Fistula Stenosis Detection using Wavelets and Support Vector Machines” Engineering in Medicine and Biology Society, pp. 1298-1301, 2009.
[9]M. Akay, W. Welkowitz, J. L. Semmlow, Y. M. Akay, J. Kostis “Noninvasive acoustical detection of coronary artery disease using the adaptive line enhancer method”, Engineering Medical and Biological Engineering and Computing, vol. 30, no. 2, pp. 147-154, 1992.
[10] M. Akay “Wavelet applications in medicine”, Spectrum IEEE, vol. 34, no.5, pp. 50-56, 1997.
[11]M. M. Munguia, P. Vasquez, E. Mattsson, B. Mandersson “Acoustical Detection of Venous Stenosis in Hemodialysis Patients using Principal Component analysis”, 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3654-3657, 2010.
[12]Y. M. Akay, M. Akay, W. Welkowitz, J. L. Semmlow and J. B. Kostis, “Noninvasive Acoustical Detection of Coronary Artery Disease: A Comparative Study of Signal Processing Methods”, IEEE Transactions on Biomedical Engineering, vol. 40, no. 6, pp. 571-578, 1993.
[13]M. Grama, J. T. Olesena, H. C. Riis, M. Selvaratnam, H. Meyer-Hofmann, B. B. Pedersen, J. H. Christensen, J. Struijk and S. E. Schmidt, “Stenosis detection algorithm for screening of arteriovenous fistulae”, The International Federation for Medical and Biological Engineering, vol. 34, pp. 241-244, 2011.
[14]J. Semmlow, L. Welkowitz, J. Kostis, J. W. Mackenzie “Coronary Artery Disease - Correlates Between Diastolic Auditory Characteristics and Coronary Artery Stenoses”, IEEE Transactions on Biomedical Engineering, vol. 30, pp. 136-139, 1983.
[15]Jian-Xing Wu, Chian-Ming Li, Wei-Ling Chen, Chia-Hung Lin, Tainsong Chen, “Application of Van der Pol oscillator screening for peripheral arterial disease in patients with diabetes mellitus”, Journal of Biomedical Science and Engineering, vol. 6, pp.1143-1154, 2013.
[16]Wei-Ling Chen, Chung-Dann Kan, Chia-Hung Lin, Chen, T., “A Rule-based Decision-making Diagnosis System to Evaluate arteriovenous Shunt Stenosis for Hemodialysis Treatment of Patients Using Fuzzy Petri Nets, ” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 2, pp. 703-713, 2014.
[17]Wei-Ling Chen, Chia-Hung Lin, Tainsong Chen , Pei-Jarn Chen, and Chung-Dann Kan, “Stenosis Detection using Burg Method with Autoregressive Model for Hemodialysis Patients,” Journal of Medical and Biomedical Engineering, vol. 33, no. 4, pp. 356-362, 2013.
[18]Wei-Ling Chen, Chia-Hung Lin, Tainsong Chen, Chung-Dann Kan, “The feasibility of Application Phonoangiography with Fractional Order Chaotic System in Arteriovenous Shunt Stenosis Detection”, IEEE The International Conference on Orange Technologies, pp. 123-126, 2013.
[19]簡名儀,“以血流聲音時頻域特徵參數探究透析瘻管之狹窄程度”, 義守大學生物醫學工程學系碩士論文, 2011.
[20]林佑軒,“以聽音技術診斷血管通路窄化之功能性評估方法”,國立成功大學航空太空研究所碩士論文, 2014.
[21]C. R. Joyner, and J. M. Reid, “Applications of ultrasound in cardiology and cardiovascular physiology.” Progress in Cardiovascular Diseases, vol. 5, pp. 482, 1963.
[22]D. E. Strandness, R. D. Schultz, D. S. Sumner, R. F. Rushmer, “Ultrasonic flow detection: a useful technic in the evaluation of peripheral vascular disease”, The American Journal of Surgery, vol. 113, pp. 311,1967.
[23]J. O. Hinze, Turbulence , McGraw-Hill, New York, 1959.
[24]R. F. R. Weyers, “Vibration and Near-Field Sound of Thin-Walled Cylinders Caused by Internal Turbulent Flow”, NASA, TN D- 430 ,1959.
[25]H. P. Bakewell, G. F. Carey, J. J. Libuha, H. H Schloemer, W. A. Von Winkle, “Wall Pressure Correlations in Turbulent Pipe Flow”, U.S. Navy Underwater Sound Laboratory, Report 559-1-052-00-00, 1962.
[26]R. S. Lees, C. F. Dewey, ”Phonoangiography: A New Noninvasive Diagnostic Method for Studying Arterial Disease”, Proceedings of the National Academy of Sciences of the United States of America, vol. 67, No. 2, pp. 935-942, 1970.
校內:2020-07-24公開