簡易檢索 / 詳目顯示

研究生: 夏世林
Hsia, Shin-lin
論文名稱: 中孔洞金屬氧化物之合成研究
Synthesis of Mesoporous Metal Oxides
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: 氧化鐵氧化鋯二氧化鈦金屬氧化物中孔洞
外文關鍵詞: TiO2, metal oxides, mesoporous, Fe2O3, ZrO2
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中孔洞碳材因具有高表面積,大孔洞尺度堅韌的結構,並能以簡易的燒法將其移除,因此可利用其作為固態模板來合成出介尺度結構孔洞材料。特別是對於不易找到適當界面活性劑當模板的金屬氧化物孔洞材料的合成,本研究是藉由簡易的含浸及燒法合成中孔洞金屬氧化物材料。
    中孔洞金屬氧化物的合成方法是混合各類型金屬氧化物前驅物和中孔洞碳材,溶於有機溶劑中,待溶劑揮發後,金屬氧化物前驅物吸附於碳材的孔洞中,再經由高溫燒,在這過程中先在200~300℃的條件下,促使金屬氧化物的結晶性提高,並限制金屬氧化物的粒徑大小,再經由500~800℃的程序,碳材模板可被移除,最後生成高結晶性的中孔洞金屬氧化物。
    以酚醛樹酯PF2180當模板,可以簡化中孔洞金屬氧化物的合成步驟。利用熱固性酚醛樹酯在低溫時是軟性模板,高溫時會自身交聯聚集變硬的這個特性,來合成出奈米級的中孔洞金屬氧化物。藉由停留結晶化溫度200~300℃和改變持溫時間,提高金屬氧化物的結晶性,並限制金屬氧化物的粒徑大小,再經由400~600℃的程序,移除酚醛樹酯PF2180,最後生成高結晶性的中孔洞金屬氧化物。
    有鑑於高分子混法所合成的中孔洞碳材必須使用HF移除氧化矽模板。然而HF腐蝕性極強,會增加合成上的危險性。故改以氧化鋅當隔板,利用溶劑揮發自組合的方式合成中孔洞碳材。所合成的中孔洞碳材只需以無機酸移除隔板氧化鋅,可以避免使用HF,降低了在合成步驟上的危險性。藉由改變不同的實驗變因來找出最適當的條件,合成出良好孔洞性以及高表面積的中孔洞碳材,並將其應用在高速充放電之電容上。

    In this thesis, we used the mesoporous carbons of high surface area, large pore volume, large pore size, high stable carbon framework and easy removal by calcination as solid template to prepare the porous metal oxide. Especially for mesoporous metal oxides that can’t easily find suitable surfactant as template to prepare. Simple impregnation of metal oxide precursors and calcination process were used to prepare mesoporous metal oxide.
    To prepare different mesoporous metal oxides, the ethanolic solution of proper metal oxide precursor is mixed with the mesoporous carbons. Until evaporating solvent, we got the metal oxide precursors -containing mesoporous carbons. Annealing at 200~300℃ prior to calcination will increase crystalline of the mesoporous metal oxide, and the particle size of mesoporous metal oxide was confined within the mesoporous carbon. After calcination at 500~800℃ for the removal carbon template, mesoporous metal oxides of large pore size and high surface area and crystalline was prepared.
    To avoid using the mesoporous carbons as the solid templates, a phenol formaldehyde (PF2180)/F127 polymer blend was tried to act as the template to synthesize the mesoporous metal oxide. Because the thermosetting phenol formaldehyde can cross-link at relatively low template, the hard cross-liked framework can also prevent the self-aggregation of the metal oxides and hence the mesoporous metal oxides were generated. From the analyzing data, the mesoporous metal oxides can also be synthesized by using the soft PF2180/F127 polymer blending template. Similarly, annealing at 200~300℃ before calcination will raise crystalline of mesoporous metal oxide and reduce the particle size of the resulted metal oxide.
    Using polymer blend/silica nano-composite to synthesize mesoporous carbon essentially requires the high-toxicity HF for silica removal. Therefore, we use ZnO nanoparticles as solid block for preventing the self-aggregation of the PF resin to synthesize the mesoporous carbons via a solvent evaporating self-assembling process. The ZnO nanoparticles can be almost completely removed by HCl solution. In order to obtain the mesoporous carbons of high porosity, we tried to change the synthetic steps, water content and the composites. Owing to the high surface area, and large pore size, the resulted mesoporous carbon can be applied to high-power capacitance and demonstrates a high capacitance retention even at high speed charge-discharge rate.

    第一章 緒論..............................................................................................1 1.1 研究動機與目的.................................................................................1 1.2 界面活性劑性質簡介.........................................................................4 1.3 微胞的簡介.........................................................................................6 1.4 微胞的形成.........................................................................................8 1.4.1 疏水效應......................................................................................9 1.4.2 靜電效應......................................................................................9 1.4.3 界面活性劑的分子排列................................. ............................9 1.5 矽酸鹽的化學概念...........................................................................10 1.6金屬氧化物的簡介.............................................................................13 1.6.1 二氧化鈦(Titanium Oxide; TiO2).............................................13 1.6.2 氧化鋯(Zirconium Oxide; ZrO2).............................. ...............13 1.6.3 氧化鐵(Iron(III) Oxide; Fe2O3)....................... ........................14 1.6.4 磷酸鋰鐵(Lithium-iron-phosphate; LiFePO4)........................14 1.6.5 氧化鋰錳(Lithium Manganese Oxide; LiMn2O4)...................14 1.7 觸媒的合成方法...............................................................................15 第二章 實驗部份....................................................................................17 2.1 化學藥品...........................................................................................17 2.2 樣品合成方法...................................................................................17 2.2.1 利用高分子混法(polymer blending)製造中孔洞碳材之合成步驟......................................................................................................17 2.2.2 以中孔洞碳材當模板合成金屬氧化物孔洞材料之合成步驟18 2.2.3 以酚醛樹脂 PF2180 當模板合成金屬氧化物孔洞材料之合成步驟......................................................................................................19 2.2.4 以氧化鋅當隔層(block)合成出中孔洞碳材之合成步驟.........19 2.3 樣品鑑定方法...................................................................................20 2.3.1 熱重量分析 (thermogravimetric analysis;TGA)....................20 2.3.2 氮氣吸附/脫附測量 (N2 adsorption/desorption isothermal) ...20 2.3.3 X–射線粉末繞射光譜 (Powder X–ray Diffraction; XRD)....23 2.3.4 穿透式電子顯微鏡 (Transmission electron microscope TEM) ...................................................................................................24 第三章 中孔洞碳材應用於合成中孔洞金屬氧化物............................27 3.1 研究目的和動機...............................................................................27 3.2 高分子混摻所合成的中孔洞碳材...................................................27 3.3 二氧化鈦(Titanium Oxide; TiO2)...................................................29 3.3.1 不同燒溫度所合成的二氧化鈦孔洞材料............................29 3.3.2 不同四烷基氧鈦與碳材的重量比所合成的二氧化鈦孔洞材料............................................................................................................31 3.3.3 不同結晶化溫度和持溫時間所合成的二氧化鈦孔洞材料…33 3.4 氧化鋯(Zirconium Oxide; ZrO2).....................................................36 3.4.1 不同燒溫度所合成的氧化鋯孔洞材料................................36 3.4.2 不同醋酸鋯與碳材的重量比合成的氧化鋯孔洞材料............38 3.4.3 改變結晶化溫度和持溫時間所合成的氧化鋯孔洞材料……40 3.5 氧化鐵(Iron(III) Oxide; Fe2O3)......................................................42 3.5.1 有無熱裂解合成出不同型態的氧化鐵孔洞材料....................42 3.5.2 改變熱裂解的溫度和持溫時間所合成的氧化鐵孔洞材料....45 3.5.3改變硝酸鐵與碳材的重量比合成的氧化鐵..............................47 3.6 磷酸鋰鐵(Lithium-iron-phosphate; LiFePO4)...............................49 3.7 氧化鋰錳(Lithium Manganese Oxide; LiMn2O4)..........................52 3.8 綜合討論...........................................................................................55 第四章 以酚醛樹酯 PF2180 當模板應用於合成金屬氧化物….......57 4.1 研究目的和動機...............................................................................57 4.2 二氧化鈦(Titanium Oxide; TiO2)..................................................57 4.2.1 不同燒溫度所合成的二氧化鈦孔洞材料............................57 4.2.2 不同四烷基氧鈦克重所合成出的二氧化鈦孔洞材料............60 4.2.3 改變結晶化溫度和持溫時間合成的二氧化鈦孔洞材料........62 4.2.4 加入不同量的3M HNO3合成的二氧化鈦...............................63 4.3 氧化鋯(Zirconium Oxide; ZrO2).....................................................66 4.3.1不同燒溫度所合成的氧化鋯孔洞材料..................................66 4.3.2 不同醋酸鋯克重所合成的氧化鋯孔洞材料............................68 4.3.3 改變結晶化溫度和持溫時間所合成的氧化鋯孔洞材料…....69 4.3.4 加入不同量的 3M HNO3 所合成的氧化鋯孔洞材料............70 4.4 綜合討論...........................................................................................72 第五章 以氧化鋅(ZnO)當隔板(block)應用於合成中孔洞碳材.........73 5.1 研究動機與目的...............................................................................73 5.2 結果與討論.......................................................................................74 5.2.1 合成時改變不同酚醛樹脂 PR620 含量所合成出的中孔洞碳材..........................................................................................................74 5.2.2 合成時添加不同量的界面活性劑 F127 所合成出的中孔洞碳材............................................................................................................77 5.2.3 合成時添加不同的水含量所合成出的中孔洞碳材................79 5.2.4 添加 ZnO 後再加入 5 克的水和不同量的 3M HNO3 水溶液所 合成出的中孔洞碳材..................................................................82 5.3 合成時使用 PEG6000 取代 F127 所合成出的中孔洞碳材.......84 5.4 綜合討論...................................................................................... ....87 第六章 結論............................................................................................89

    1. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Marcel Dekker, Active Carbon New York 1988.
    2. H. C. Foley, J. Microporous Mater., 1995, 4, 407.
    3. T. Kyotani, Carbon, 2000, 38, 269.
    4. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996, 8, 454.
    5. W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
    6. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
    7. S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
    8. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
    9. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 2000, 12, 3397.
    10. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr, 1986, 352, 3.
    11. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
    12. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and R. Ryoo, Nature, 2000, 408, 449.
    13. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
    14. J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
    15. W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
    16.V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, Langmuir, 2004, 20, 3785.
    17. S. Kuo, C. Lin, and F. Chang, Macromolecules, 2002, 35, 278.
    18. D. Attwood, A. T. Florence, Surfactant System: their Chemistry, Pharmacy and Biology, Chapman and Hall, New York,
    19. L. Sepulveda, J. Cortes, American Chemistry Society, 1985, 89, 5322.
    20. F. R. Husson, J. Phys. Chem., 1964, 68, 3504.
    21. R. R. Ying, C. P. Mehnert, and M. S. Eong, Angew. Chem., 1999, 38, 56.
    22. T. F. Todros, Surfactants, Academic Press : London, 1984.
    23. B. Lindman and H. Wennerstrm, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    24. B. Naim, A Hydrophobic Interaction, Plenum Press, New York, 1980.
    25. C. Tanford, The Hydrophobic Effect, 2nd edn. Wiley, New York, 1980.
    26. J. N. Israelachvili, and R. G.. Horn, Q. Rev. Biophysics, 1980, 13, 121.
    27. J. Mithchell and B. W. Ninham, J. Chem. Soc. Farad. Trans. II, 1981, 77, 1264.
    28. R. K. Iler, The Chemistry of Silica, John Wiley, New York, 1979.
    29. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Freng, T. E. Gier, P. Sieger, A. Firouzi, and G. D. Stukey. Chem. Mater. 1994, 6, 1176.
    30 C. J. Brinker and G. W. Scherer, J. Non Cry. Solids, 1985, 70, 301.
    31. M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441.
    32. F. Sala, F. Trifiro, J. Catal., 1974, 34, 68.
    33. M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192.
    34. N. W. Cant, and W. K. Hall, J. Phys. Chem., 1997, 75, 2914.
    35. M. Haruta, N. Yamada, T. Kobatashi, and S. Iijima, J. Catal, 1989, 115, 301.
    36. R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, Electrochem. Solid State Lett. 4 (2001) A187.
    37. D. H. Lee, J. G. Park, K. J. Choi, H. J. Choi, D. W. Kim, Eur. J. Inorg. Chem. 2008, 878–882
    38. I. Taniguchi, K. Matsuda, H. Furubayashi, and S. Nakajima, AIChE Journal July 2006 Vol. 52, No. 7
    39. C. Garcia, Y. Zhang, F. DiSalvo, and Ul. Wiesner, Angew. Chem. Int. Ed. 2003, 42, 1526 – 1530
    40. H. T. Wang, P. Xu, W. Zhong, L. Shen, Q. G. Du, Polym. Degrad. Stab. 2005, 87, 319.
    41. H. W. Zhou, J. Ma, Z. C. Li, C. H. Chen, Chem. J. Chin. Univ. 2005,
    26, 1582 (in Chinese).
    42. Young. S. Kang, S. Risbud, J. F. Rabolt and P. Stroeve, Chem. Mater., Vol. 8, No. 9, 1996
    43. Y. Ni, X. Ge, Z. Zhang and Q. Ye, Chem. Mater. 2002, 14, 1048 -1052
    44. A. Ulman, A. Dyal, Chem. Mater. 2002, 14, 1778-1787
    45. F. Jiao, J. C. Jumas, A. Harrison and P. G. Bruce, J. AM. CHEM. SOC. 9 VOL. 128, NO. 39, 2006 12909
    46. L. Zhang, G. C. Papaefthymiou and J. Y. Ying, J. Phys. Chem. B 2001, 105, 7414-7423
    47. T. Pedro, G. C. Teresita, and C. J. Serna, J. Phys. Chem. B 2003, 107, 20-24
    48. E. Delahaye, V. Escax and A. Davidson. J. Phys. Chem. B

    49. C. Cannas, E. Musu, A. Musinu, G. Piccaluga, G. Spano. Journal of Non-Crystalline Solids 345 & 346 (2004) 653–657
    50. F. S. Yen, W. C. Chen, J. M. Yang and C. T. Hong. Nano Lett., Vol. 2, No. 3, 2002
    51. L. Pan, L. Pu, Y. Shi, S. Song, Z. Xu, R. Zhang and Y. Zheng. Adv. Mater. 2007, 19, 461–464
    52. F. Jiao and P. G. Bruce. Adv. Mater. 2007, 19, 657 – 660
    53. X. Wang and Y. Li. Chem. Eur. J. 2003, 9, No. 1
    54. Y. F. Han, F. Chen, Z. Zhong, L. Chen and E. Widjaja. J. Phys. Chem. B 2006, 110, 24450-24456
    55. F. Jiao and P. G. Bruce. Adv. Mater. 2007, 19, 657 – 660
    56. J. Barker, M. Y. Saidi, and J. L. Swoyer. Journal of The Electrochemical Society, 150 ~ 6 A68 4- A688 ~2003
    57. J. Barker, and J. L. Swoyer. Journal of The Electrochemical Society, 151 ~ 10 A1670 - A1677(2004)
    58. C. Alvaro, C. Y. Manuel, JessSantos-Pea and R. C. Enrique. Eur. J. Inorg. Chem. 2006, 1758–1764
    59. G. X. Wang, S. Bewlay, J. Yao, S. X. Dou and H. K. Liu. Electrochemical and Solid-State Letters, 7 ~12! A503 - A506 ~2004
    60. Y. Wang, Jiulin. Wang, Jun Yang,and Yanna Nuli. Adv. Funct. Mater. 2006, 16, 2135–2140
    61. Y. Wang, J. Wang, J. Yang and Y. Nuli. Adv. Funct. Mater. 2006, 16, 2135–2140
    62. A. Ait-Salah, K. Zaghib, A. Mauger, F. Gendron and C. M. Julien, hys. stat. sol. (a) 203, No. 1, R1–R3 (2006)
    63. A. Ait-Salah, J. Dodd, A. Mauger, R. Yazami, F. Gendron and C. M. Julien, Z. Anorg. Allg. Chem. 2006, 632, 1598 - 1605
    64. G. X. Wang, S. Bewlay, S. A., R. S. Liu, V. A. Lee and J. M. Chend. Journal of The Electrochemical Society, 153 1 A25-A31 2006
    65. H. J. Leu, M. S. Lin. Electroanalysis 18, 2006, No. 3, 307 – 310
    66. I. Taniguchi, K. Matsuda, H. Furubayashi and S. Nakajima. AIChE Journal July 2006 Vol. 52, No. 7
    67. S. Takano, T. Kaji1, S. Okubo M. Yoshida, Y. Inagaki, S. Kimura, T. Asano.H. Ohta, T. Kunimoto, R. Dziembaj, M. Molenda and C. Rudowicz. phys. stat. sol. (c) 3, No. 8, 2820– 2823 (2006)

    下載圖示 校內:立即公開
    校外:2008-07-15公開
    QR CODE