| 研究生: |
夏世林 Hsia, Shin-lin |
|---|---|
| 論文名稱: |
中孔洞金屬氧化物之合成研究 Synthesis of Mesoporous Metal Oxides |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氧化鐵 、氧化鋯 、二氧化鈦 、金屬氧化物 、中孔洞 |
| 外文關鍵詞: | TiO2, metal oxides, mesoporous, Fe2O3, ZrO2 |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中孔洞碳材因具有高表面積,大孔洞尺度堅韌的結構,並能以簡易的燒法將其移除,因此可利用其作為固態模板來合成出介尺度結構孔洞材料。特別是對於不易找到適當界面活性劑當模板的金屬氧化物孔洞材料的合成,本研究是藉由簡易的含浸及燒法合成中孔洞金屬氧化物材料。
中孔洞金屬氧化物的合成方法是混合各類型金屬氧化物前驅物和中孔洞碳材,溶於有機溶劑中,待溶劑揮發後,金屬氧化物前驅物吸附於碳材的孔洞中,再經由高溫燒,在這過程中先在200~300℃的條件下,促使金屬氧化物的結晶性提高,並限制金屬氧化物的粒徑大小,再經由500~800℃的程序,碳材模板可被移除,最後生成高結晶性的中孔洞金屬氧化物。
以酚醛樹酯PF2180當模板,可以簡化中孔洞金屬氧化物的合成步驟。利用熱固性酚醛樹酯在低溫時是軟性模板,高溫時會自身交聯聚集變硬的這個特性,來合成出奈米級的中孔洞金屬氧化物。藉由停留結晶化溫度200~300℃和改變持溫時間,提高金屬氧化物的結晶性,並限制金屬氧化物的粒徑大小,再經由400~600℃的程序,移除酚醛樹酯PF2180,最後生成高結晶性的中孔洞金屬氧化物。
有鑑於高分子混法所合成的中孔洞碳材必須使用HF移除氧化矽模板。然而HF腐蝕性極強,會增加合成上的危險性。故改以氧化鋅當隔板,利用溶劑揮發自組合的方式合成中孔洞碳材。所合成的中孔洞碳材只需以無機酸移除隔板氧化鋅,可以避免使用HF,降低了在合成步驟上的危險性。藉由改變不同的實驗變因來找出最適當的條件,合成出良好孔洞性以及高表面積的中孔洞碳材,並將其應用在高速充放電之電容上。
In this thesis, we used the mesoporous carbons of high surface area, large pore volume, large pore size, high stable carbon framework and easy removal by calcination as solid template to prepare the porous metal oxide. Especially for mesoporous metal oxides that can’t easily find suitable surfactant as template to prepare. Simple impregnation of metal oxide precursors and calcination process were used to prepare mesoporous metal oxide.
To prepare different mesoporous metal oxides, the ethanolic solution of proper metal oxide precursor is mixed with the mesoporous carbons. Until evaporating solvent, we got the metal oxide precursors -containing mesoporous carbons. Annealing at 200~300℃ prior to calcination will increase crystalline of the mesoporous metal oxide, and the particle size of mesoporous metal oxide was confined within the mesoporous carbon. After calcination at 500~800℃ for the removal carbon template, mesoporous metal oxides of large pore size and high surface area and crystalline was prepared.
To avoid using the mesoporous carbons as the solid templates, a phenol formaldehyde (PF2180)/F127 polymer blend was tried to act as the template to synthesize the mesoporous metal oxide. Because the thermosetting phenol formaldehyde can cross-link at relatively low template, the hard cross-liked framework can also prevent the self-aggregation of the metal oxides and hence the mesoporous metal oxides were generated. From the analyzing data, the mesoporous metal oxides can also be synthesized by using the soft PF2180/F127 polymer blending template. Similarly, annealing at 200~300℃ before calcination will raise crystalline of mesoporous metal oxide and reduce the particle size of the resulted metal oxide.
Using polymer blend/silica nano-composite to synthesize mesoporous carbon essentially requires the high-toxicity HF for silica removal. Therefore, we use ZnO nanoparticles as solid block for preventing the self-aggregation of the PF resin to synthesize the mesoporous carbons via a solvent evaporating self-assembling process. The ZnO nanoparticles can be almost completely removed by HCl solution. In order to obtain the mesoporous carbons of high porosity, we tried to change the synthetic steps, water content and the composites. Owing to the high surface area, and large pore size, the resulted mesoporous carbon can be applied to high-power capacitance and demonstrates a high capacitance retention even at high speed charge-discharge rate.
1. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Marcel Dekker, Active Carbon New York 1988.
2. H. C. Foley, J. Microporous Mater., 1995, 4, 407.
3. T. Kyotani, Carbon, 2000, 38, 269.
4. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996, 8, 454.
5. W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
6. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
7. S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
8. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
9. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 2000, 12, 3397.
10. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr, 1986, 352, 3.
11. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
12. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and R. Ryoo, Nature, 2000, 408, 449.
13. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
14. J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
15. W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
16.V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, Langmuir, 2004, 20, 3785.
17. S. Kuo, C. Lin, and F. Chang, Macromolecules, 2002, 35, 278.
18. D. Attwood, A. T. Florence, Surfactant System: their Chemistry, Pharmacy and Biology, Chapman and Hall, New York,
19. L. Sepulveda, J. Cortes, American Chemistry Society, 1985, 89, 5322.
20. F. R. Husson, J. Phys. Chem., 1964, 68, 3504.
21. R. R. Ying, C. P. Mehnert, and M. S. Eong, Angew. Chem., 1999, 38, 56.
22. T. F. Todros, Surfactants, Academic Press : London, 1984.
23. B. Lindman and H. Wennerstrm, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
24. B. Naim, A Hydrophobic Interaction, Plenum Press, New York, 1980.
25. C. Tanford, The Hydrophobic Effect, 2nd edn. Wiley, New York, 1980.
26. J. N. Israelachvili, and R. G.. Horn, Q. Rev. Biophysics, 1980, 13, 121.
27. J. Mithchell and B. W. Ninham, J. Chem. Soc. Farad. Trans. II, 1981, 77, 1264.
28. R. K. Iler, The Chemistry of Silica, John Wiley, New York, 1979.
29. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Freng, T. E. Gier, P. Sieger, A. Firouzi, and G. D. Stukey. Chem. Mater. 1994, 6, 1176.
30 C. J. Brinker and G. W. Scherer, J. Non Cry. Solids, 1985, 70, 301.
31. M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441.
32. F. Sala, F. Trifiro, J. Catal., 1974, 34, 68.
33. M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192.
34. N. W. Cant, and W. K. Hall, J. Phys. Chem., 1997, 75, 2914.
35. M. Haruta, N. Yamada, T. Kobatashi, and S. Iijima, J. Catal, 1989, 115, 301.
36. R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, Electrochem. Solid State Lett. 4 (2001) A187.
37. D. H. Lee, J. G. Park, K. J. Choi, H. J. Choi, D. W. Kim, Eur. J. Inorg. Chem. 2008, 878–882
38. I. Taniguchi, K. Matsuda, H. Furubayashi, and S. Nakajima, AIChE Journal July 2006 Vol. 52, No. 7
39. C. Garcia, Y. Zhang, F. DiSalvo, and Ul. Wiesner, Angew. Chem. Int. Ed. 2003, 42, 1526 – 1530
40. H. T. Wang, P. Xu, W. Zhong, L. Shen, Q. G. Du, Polym. Degrad. Stab. 2005, 87, 319.
41. H. W. Zhou, J. Ma, Z. C. Li, C. H. Chen, Chem. J. Chin. Univ. 2005,
26, 1582 (in Chinese).
42. Young. S. Kang, S. Risbud, J. F. Rabolt and P. Stroeve, Chem. Mater., Vol. 8, No. 9, 1996
43. Y. Ni, X. Ge, Z. Zhang and Q. Ye, Chem. Mater. 2002, 14, 1048 -1052
44. A. Ulman, A. Dyal, Chem. Mater. 2002, 14, 1778-1787
45. F. Jiao, J. C. Jumas, A. Harrison and P. G. Bruce, J. AM. CHEM. SOC. 9 VOL. 128, NO. 39, 2006 12909
46. L. Zhang, G. C. Papaefthymiou and J. Y. Ying, J. Phys. Chem. B 2001, 105, 7414-7423
47. T. Pedro, G. C. Teresita, and C. J. Serna, J. Phys. Chem. B 2003, 107, 20-24
48. E. Delahaye, V. Escax and A. Davidson. J. Phys. Chem. B
49. C. Cannas, E. Musu, A. Musinu, G. Piccaluga, G. Spano. Journal of Non-Crystalline Solids 345 & 346 (2004) 653–657
50. F. S. Yen, W. C. Chen, J. M. Yang and C. T. Hong. Nano Lett., Vol. 2, No. 3, 2002
51. L. Pan, L. Pu, Y. Shi, S. Song, Z. Xu, R. Zhang and Y. Zheng. Adv. Mater. 2007, 19, 461–464
52. F. Jiao and P. G. Bruce. Adv. Mater. 2007, 19, 657 – 660
53. X. Wang and Y. Li. Chem. Eur. J. 2003, 9, No. 1
54. Y. F. Han, F. Chen, Z. Zhong, L. Chen and E. Widjaja. J. Phys. Chem. B 2006, 110, 24450-24456
55. F. Jiao and P. G. Bruce. Adv. Mater. 2007, 19, 657 – 660
56. J. Barker, M. Y. Saidi, and J. L. Swoyer. Journal of The Electrochemical Society, 150 ~ 6 A68 4- A688 ~2003
57. J. Barker, and J. L. Swoyer. Journal of The Electrochemical Society, 151 ~ 10 A1670 - A1677(2004)
58. C. Alvaro, C. Y. Manuel, JessSantos-Pea and R. C. Enrique. Eur. J. Inorg. Chem. 2006, 1758–1764
59. G. X. Wang, S. Bewlay, J. Yao, S. X. Dou and H. K. Liu. Electrochemical and Solid-State Letters, 7 ~12! A503 - A506 ~2004
60. Y. Wang, Jiulin. Wang, Jun Yang,and Yanna Nuli. Adv. Funct. Mater. 2006, 16, 2135–2140
61. Y. Wang, J. Wang, J. Yang and Y. Nuli. Adv. Funct. Mater. 2006, 16, 2135–2140
62. A. Ait-Salah, K. Zaghib, A. Mauger, F. Gendron and C. M. Julien, hys. stat. sol. (a) 203, No. 1, R1–R3 (2006)
63. A. Ait-Salah, J. Dodd, A. Mauger, R. Yazami, F. Gendron and C. M. Julien, Z. Anorg. Allg. Chem. 2006, 632, 1598 - 1605
64. G. X. Wang, S. Bewlay, S. A., R. S. Liu, V. A. Lee and J. M. Chend. Journal of The Electrochemical Society, 153 1 A25-A31 2006
65. H. J. Leu, M. S. Lin. Electroanalysis 18, 2006, No. 3, 307 – 310
66. I. Taniguchi, K. Matsuda, H. Furubayashi and S. Nakajima. AIChE Journal July 2006 Vol. 52, No. 7
67. S. Takano, T. Kaji1, S. Okubo M. Yoshida, Y. Inagaki, S. Kimura, T. Asano.H. Ohta, T. Kunimoto, R. Dziembaj, M. Molenda and C. Rudowicz. phys. stat. sol. (c) 3, No. 8, 2820– 2823 (2006)