簡易檢索 / 詳目顯示

研究生: 詹涵雯
Chan, Han-Wen
論文名稱: 以P3HT Langmuir單分子層為模板製備奈米金粒子/P3HT混合LB膜
Fabrication of P3HT/Gold Nanoparticles LB Films by P3HT Templating Langmuir Monolayer
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 導電高分子Langmuir-Blodgett技術奈米金粒子氣/液界面單分子層模板有機/無機混成薄膜
外文關鍵詞: conductive polymer, Langmuir-Blodgett techniques, gold nanoparticles, air/liquid interface, monolayer template, organic/inorganic
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以具有位置規則性的聚3-己基噻吩(regioregular poly-(3-hexylthiophene),rr-P3HT)或是混合聚3-烷基噻吩與十八烷胺(octadecylamine,ODA)作為Langmuir單分子層模板,藉由單分子層與奈米金粒子間的作用力,以及乙醇或氯化鈣添加的不穩定效應,將分散在水溶液中的金奈米粒子(AuNPs)吸附至氣/液界面,以製備P3HT/AuNPs混成薄膜。本實驗藉由單分子層的表面壓-面積(π-A)等溫曲線,穿透式電子顯微鏡(TEM)以及原子力顯微鏡(AFM)的觀察,來了解P3HT/AuNPs混合單分子層在氣/液界面上的行為及薄膜表面形態的變化。
    由實驗結果顯示,P3HT在純水表面無法均勻地分散形成真正的單分子層,而會形成聚集結構。P3HT與金粒子具有化學作用力,由於此作用力屬於短程作用力,單獨以P3HT為吸附膜板所吸附金粒子數量不多,僅改善部份P3HT分子的聚集結構。若選用適當的添加劑,能有效地增加金粒子在氣/液界面上的吸附量,改善P3HT的聚集現象,成功製備出P3HT/AuNPs薄膜。此外,在適當ODA單分子層濃度的添加下,藉由P3HT與ODA間的分子作用力,有助於P3HT單分子層形成均勻平坦地結構,亦能有效地增加金粒子在氣/液界面上的吸附量,成功製備出P3HT/AuNPs薄膜。

    Regioregular poly-(3-hexylthiophene)(rr-P3HT) and mixed P3HT/ octadecylamine(ODA) was used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. Furthermore, the adsorption of AuNPs was enhanced by the destabilization effect of ethanol and CaCl2 introduced into the colloidal solution. The behaviors of the P3HT/AuNPs mixed films were studied by the pressure-area (π-A) isotherm and by the observations of transmission electron microscopy (TEM) and atomic force microscope (AFM). The experimental results show that P3HT do not form a homogeneous monolayer and tends to aggregate at the air/liquid interface. Meanwhile, the AuNPs adsorbed by the P3HT monolayer are low, attributable to the short interaction distance between AuNPs and P3HT. The introduction of ethanol and CaCl2 into the colloidal solution can increase the adsorbed amount of AuNPs, decrease the aggregation structure of P3HT, and leads to a more homogeneous P3HT/AuNPs monolayer. In addition, the introduction of ODA in the P3HT monolayer can also decrease the aggregation of P3HT molecules and enhance the incorporation of AuNPs into the monolayer.

    中文摘要 I Abstract III 致謝 IV 總目錄 V 表目錄 IX 圖目錄 X 第1章 緒論 1 1.1 前言 1 1.2 研究動機及目的 4 第2章 文獻回顧 5 2.1 Langmuir-Blodgett 簡介 5 2.1.1 Langmuir-Blodgett 單分子層形成原理 5 2.1.2 Langmuir膜之相轉變 7 2.1.3 Langmuir-Blodgett膜之製備 10 2.1.4 Langmuir-Schaeffer 膜之製備 11 2.1.5 Langmuir-Blodgett之形成 12 2.2 導電高分子 14 2.2.1 起源 14 2.2.2 位置規則性聚3-烷基噻吩 15 2.2.3 聚3-己基噻吩單分子層行為 18 2.3 奈米複合材料 21 2.3.1 奈米複合材料特性 21 2.3.2 聚3-己基噻吩/奈米金粒子混合膜 24 第3章 實驗 26 3.1 實驗藥品 26 3.2 實驗儀器簡介 27 3.2.1 Langmuir-Blodgett 沉積裝置 27 3.2.2 表面壓測量原理 28 3.2.3 雷射光散射法粒徑測定儀 30 3.2.4 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 31 3.2.5 原子力顯微鏡(Atomic Force Microscope,AFM) 32 3.3 實驗步驟 34 3.3.1 奈米金粒子合成 34 3.3.2 導電高分子/奈米金粒子混和單分子層等溫線測量 35 3.3.3 導電高分子/奈米金粒子Langmuir-Blodgett混和薄膜的製備 36 第4章 結果與討論 37 4.1 聚3-己基噻吩單分子層在氣/液界面上行為探討 37 4.1.1 表面壓-每分子佔據面積等溫線 37 4.1.2 原子力顯微鏡分析 38 4.2 聚3-己基噻吩單分子層/奈米金粒子複合單分子層 44 4.2.1 表面壓-每分子佔據面積等溫線 44 4.2.2 穿透式電子顯微鏡分析 44 4.3 乙醇對聚3-己基噻吩單分子層/奈米金粒子複合單分子層特性的探討 49 4.3.1 表面壓-每分子佔據面積等溫線 49 4.3.2 穿透式電子顯微鏡分析 51 4.4 氯化鈣對聚3-己基噻吩單分子層單分子層特性的探討 55 4.4.1 表面壓-每分子佔據面積等溫線 55 4.4.2 穿透式電子顯微鏡 55 4.5 氯化鈣對聚3-己基噻吩單分子層/奈米金粒子複合單分子層特性的探討 58 4.5.1 表面壓-每分子佔據面積等溫線 58 4.5.2 穿透式電子顯微鏡 58 4.6 P3HT/ODA混合單分子層在氣/液界面上行為探討 63 4.6.1 表面壓-每分子佔據面積等溫線 63 4.6.2 原子力顯微鏡分析 64 4.7 P3HT/ODA/奈米金粒子混合單分子層在氣/液界面上之行為探討 69 4.7.1 表面壓-每分子佔據面積等溫線 69 4.7.2 原子力顯微鏡分析 69 4.7.3 穿透式電子顯微鏡分析 70 4.8 固定P3HT/ODA/奈米金粒子混合單分子層比例在氣/液界面上之行為探討 74 4.8.1 表面壓-每分子佔據面積等溫線 74 4.8.2 原子力顯微鏡分析 75 4.8.3 穿透式電子顯微鏡分析 75 第5章 結論與建議 81 參考文獻 83

    1. Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gua S.C.and MacDiarmid A.G., Phys. Rev. Lett. 1977, 39, 1098 .
    2. McAndrew T. P., TRIP. 1997, 5, 7
    3. Lowman, G. M., Nelson, S. L., Graves, S. M., Strouse, G. F., Buratto, S.K., “Polyelectrolyte-quantum dot multilayer films fabricated by combined layer-by-layer assembly and langmuir-schaefer deposition,” Langmuir, 2004, 20, 2057.
    4. Gaines, G.L. Jr., “Insoluble Monolayers at Liquid-Gas Interface, ” Wiley Press: New York, Chapter 6, 1966.
    5. Myers, D., Surfaces, “Interfaces, and Colloid :Principles and applications, ”VCH, Chapter 8, 1999.
    6. Roberts, G. , Ed.“ Langmuir-Blodgett Films, ” Plenum, New York, 1990.
    7. Chiang, C.K., Fincher, C., Park, Y.W., Heeger, A.J., “Electrical-conductivity in doped polyacetylene, ” physical review letters,1977,39, 1098.
    8. Cao, Y., Smith, P., Heeger, A. J., “Counterion induced processibility of conductingpolyaniline and of conducting polyblends of polyaniline in bulk polymers. ” Synthetic Metals, 1992, 48 , 91.
    9. Fujisaki, Y., Sato, H., Yamamoto, T., Fujikake, H., Tokito, S., Kurita, T.,“ Flexible color LCD panel driven by low-voltage-operation organic TFT. ” Journal of The Society For Information Display, 2007,15, 501.
    10. Kim, Y.H., Park, S.K., Moon, D.G., Kim, W.K.; Han, J.I., “Organic thin film transistor-driven liquid crystal displays on flexible polymer substrate. ” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43, 3605.
    11. Muravsky, A., Murauski, A., Chigrinov, V., Kwok, H. S., “ Optical rewritable electronic paper. ” Ieice Transactions on Electronics 2008,E91C, 1576.
    12. Subramanian, V., Chang, P. C., Lee, J. B., Molesa, S. E., Volkman, S. K.,“Printed organic transistors for ultra-low-cost RFID applications. ” Ieee Transactions on Components and Packaging Technologies, 2005,28,742.
    13.Jen K.Y., Oboodi, R., Elsenbaumer, R. L., “Processible and environmentally stable conducting polymers. ” Abstracts of Papers of The American Chemical Society 1985, 190, 17.
    14. McCullough, R.D., “The chemistry of conducting polythiophenes. ”Advanced Materials 1998, 10, 93.
    15. McCullough, R.D., “Method of forming poly-(3-substituted) thiophenes. ” United States Patent 2000, 6, 166, 172.
    16. Mizuta, Y., Matsuda, M. “Spreading behavior of poly-(N-dodecylacrylamide-co-styrene) monolayer and Langmuir-Blodgett multilayer formation,” Macromolecules 1991,24,5459.
    17. Guofeng Xu, Zhenan Bao, and John T. Groves, “ Langmuir-Blodgett Films of RegioregularPoly(3-hexylthiophene) as Field-Effect Transistors,” Langmuir 2000, 16, 1834.
    18. Itsuo Watanabe, Keith Hong, and Michael F. Rubner,“ Langmuir-Blodgett Manipulation of Poly(3-alkylthiophenes),”Langmuir 1990,6, 1164.
    19. Yu X., Yunqil L., Jie W., Daoben Z., “ Preparation and Electrical Conductivity of Langmuir–Blodgett Films of Poly(3-alkylthiophene)s,”Institute of Chemistry, 1997
    20. 黃俊益、吳春桂,”有機導電高分子/無機金屬氧化物複合材料的合成與性質探討. (2001)
    21. Barnickel P., Wokaun A., Sager W.and Eicke H.F., “Size tailoring of silver colloids by reduction in W/O microemulsions,“ J. Colloid Interf. Sci. 1992, 148, 80.
    22. Halperin W. P., Rev. of modern Phys. 1986, 58, 532.
    23. Feldhein D. L., Keating C. D., “Self-assembly of single electron transistors and related devices, ” Chem. Soc. Rev. 1998, 27, 1
    24. Qiu Z.Q., Du Y.W., H.T and J.C., “A Mossbauer study of fine iron particles (invited) , ” J. Appl. Phys. 1988, 63, 4100.
    25. Brus L., “Squeezing light from silicon, ” Nature 1991, 351, 301.
    26. Tabagi H., Ogawa H., Yamazaki Y., Ishizaki A., Nakagiri T., “Quantum size effects on photoluminescence in ultrafine Si particles, ”Appl. Phys. Lett. 1990, 56, 2379.
    27. 徐國財、張立德,“奈米複合材料”,化學工業出版社 (2002).
    28. 柯揚船、皮特.斯壯、陳憲偉,“聚合物-無機奈米複合材料”,五南圖書出版股份有限公司 (2004).
    29. Gloaguen J. M., Lefebvre J. M., “Plastic deformation behaviour of thermoplastic/clay nanocomposites” Polymer 2001, 42, 5841.
    30. Leblance J. L., “Elastomer-filler interactions and the rheology of filled rubber compounds,” J. Appl. Polym. Sc. 2000, 78, 1541 .
    31. Mayer B. R., Mark J. E., “Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems, ”E. Colloid Polymer Sci. 1997, 275, 333.
    32. Edelstein A. S. and Cammarata R. C., “Nanomaterials: Synthesis,Properties and Applications,” Bristol(Philadelphia : Institute of Physics Pub.), 1998.
    33. Vidya V., Prasanth K.N., Narang S.N. “Molecular packing in CdS containing conducting polymer composite LB multilayers,” Colloids Surf.A: Physicochem. Eng. Asp. 2002, 67, 198.
    34. Hicks J.F., Young S.S., and Royce W.M., “Layer-by-layer growth of polymer/nanoparticle films containing monolayer-protected gold clusters ,” Langmuir 2002, 18, 2288.
    35. Patrick G.N., Virginia R.,Julie V.M., “Effect of composition on the conductivity and morphology of poly(3-hexylthiophene)/gold nanoparticle composite Langmuir–Schaeffer films,” Phys. Chem. Chem. Phys., 2006, 8, 5096.
    36. Sirringhaus H., Brown P.J., Friend R.H., “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” letters to nature, 1999, 401 ,685.
    37. Virginia R., Patrick G.N., Stuart J., “Molecular Ordering and 2D Conductivity in Ultrathin Poly(3-hexylthiophene) /Gold Nanoparticle Composite Films,” J. Phys. Chem. B 2005, 109, 19335
    38. Lee Y.L., Tsai H.J. and Chen L.H., “Extension of poly(diphenylamine) monolayer at the air/liquid interface promoted by incorporation of gold nanoparticles,” J. Mater. Chem., 2009, 19, 5778
    39. Reincke, F., Hickey S.G., Kegel W.K., and Vanmaekelbergh D.,“ Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface,” Angew. Chem. Int. Ed. 2004, 43, 458
    40. Park, Y.K., S.H. Yoo and S. Park, “Assembly of highly ordered nanoparticles monolayers at a water/hexane interface,” Langmuir, 23 ,10505, 2007.
    41. Mirkin C.A., “Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks,” Inorganic Chemistry, 2000, 39, 2258.
    42. Frens, G., “Controlled nucleation for regulation of particle-size in monodisperse gold suspensions,” Nat. Phys. Sci. 1973,241,20.
    43. Chow, M.k. and C.f. Zukoski, “Gold sol formation mechanisms – role of colloidal stability,” J. colloid Interface Sci1994.,165,97,.
    44. Mayya, K.S., V. Patil and M. Sastry, “Influence of colloidal subphase pH on the deposition of multilayer Langmuir-Blodgett films of gold clusters,” J. Chem. Soc., Farafay trans. 1997,94,3377.
    45. Mayya, K.S., V. Patil and M. Sastry, “Lammellar multilayer gold cluster films deposited by the Langmuir-Blodgett technique,” Langmuir, 1997,13, 2575.
    46. Mayya, K.s., V. Patil and M. Sastry, “On the stability of carboxylic acid derivatized gold colloidal particles: The role of colloidal solution pH studied by optical absorption spectroscopy,” Langmuir, 1997,13,3944.
    47. Mayya, K.S., M. Sastry, “A study of the partitioning of colloidal particles based on their size during electrostatic immobilization at the air-water interface using fatty amin monolayers,” J. Phys. Chem. B,1997,101, 9790.
    48. Lee, Y.L. and K.L. Liu, “Relaxation behavior of monolayers of octadecylamine and stearic acid at the air/water interface,” Langmuir,2004,20,3180.
    49. Kim D.H., Jang Y., Park Y.D., “ Surface-Induced Conformational Changes in Poly(3-hexylthiophene) Monolayer Films,” Langmuir, 2005, 21, 3204.
    50. Rodham, D.A.; Suzuki, S.; Suenram, R.D.; Lovas, F.J.; Dasgupta, S.; Goddard,W.A.; Blake, G.A., “Hydrogen-bonding in the benzene ammonia dimmer. ” Nature, 1993, 362(3422), 735.
    51. 蔡惠榕、李玉郎,”以Langmuir-Blodgett 及自組裝技術製備奈米粒子單分子層薄膜及其在超疏水表面之應用。”(2009)

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE