簡易檢索 / 詳目顯示

研究生: 楊茹涵
Yang, Ru-Han
論文名稱: 流室式聲化學反應器全系統最佳化及實驗
The Whole-system Optimization and Experimental Validation of a Sonochemical Flow Cell
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 79
中文關鍵詞: 聲化學超音波空蝕有限元素分析流室聲化學反應器
外文關鍵詞: Ultrasound, Sonochemistry, Cavitation yield, Instantaneous power, Genetic algorithm
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波應用在近幾十年來蓬勃發展,其中聲化學是一門新興的超音波應用,主要指利用超音波空蝕汽泡反覆崩裂下汽泡內部產生極高的溫度及壓力,加速化學反應或觸發新的反應通道,以提高化學反應產率或獲取新的化學反應物。本文使用有限元素分析及基因演算法對高效率流室聲化學反應器全系統設計最佳化尺寸,再藉由LabVIEW串連訊號產生器及示波器加以控制化學反應過程中的頻率,使聲化學反應器在此控制下,能使聲化學反應器產生最大的平均聲壓,並量測出Cavitation yield隨時間產生的變化。本文將採用四組自製的壓電換能器驅動聲化學反應器,並量測其聲化學反應效率。實驗結果與COMSOL顯示本文設計出的流室式反應器可以在消耗較少能量的情況下其Cavitation yield較文獻中已發表的實驗數據來得大,且LabVIEW控制頻率對聲化學效率有獲得改善,但Cavitation yield仍會隨時間有降低的趨勢。

    Over the decades, ultrasound and sonochemical effects had been studied for accelerating and enhancing some chemical reactions. The studies and applications of sonochemistry are indeed prosperous. Therefore, this study aims at developing a high-efficiency ultrasonic flow cell by building the numerical model with COMSOL Multiphysics and associated with the optimization algorithm software MatLab. I took over previous works of my senior to consider the reason why the cavitation yield decreases as time increases. In this study, I employed COMSOL finite element method genetic algorithm to optimize ultrasonic transducers and flow cell at the same time in order to avoid the effect of the simulation accuracy. By driving homemade Langevin-type transducers with specific frequency that is controlled by LabVIEW, so that frequency can be adjust as long as the power get fewer and fewer.
    The results of experiments show that using LabVIEW controlling the function generator can increase the cavitation yield and the instantaneous power. Besides, it also show that acoustic field get centralized after simulating by COMSOL.

    摘要 I 目錄 X 圖目錄 XII 表目錄 XIV 符號說明 XV 第一章 導論 1 1-1前言 1 1-2文獻回顧 3 1-3 研究動機與本文架構 8 第二章 超音波空蝕與聲化學原理及應用 10 2-1 超音波基礎理論 10 2-2 空蝕現象 14 2-4 壓電效應 16 2-4-1正壓電效應 18 2-4-2逆壓電效應 19 2-5 聲化學效應 20 第三章 基因演算法及有限元素分析介紹 23 3-1有限元素分析模型 23 3-2基因演算法 24 3-2-1基因演算法的簡介 24 3-2-2基因演算法流程 25 3-3基因演算法優缺點 31 3-4基因演算法與有限元素軟體溝通過程 32 第四章 聲化學反應器全系統分析與最佳化 34 4-1 藍杰文換能器結構與特性 34 4-2 全系統有限元素分析 36 4-2-1邊界設定 39 4-2-2材料設定 41 4-2-3最佳化設計 43 第五章 流室式聲化學反應器之製作及效能量測 48 5-1流室式聲化學反應器的製作 48 5-2系統功率控制程式 57 5-2實驗架設 64 5-3實驗結果 68 5-3-1以輸入總能量作為判斷空蝕產量的基礎 68 5-3-2以瞬時功率作為判斷空蝕產量的基礎 70 第六章 結論與未來展望 73 6-1結論 73 6-2未來展望 74 參考文獻 75 附錄A 平均功率與聲強的計算 77

    [1] L.Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity”, Philosophical Magazine, 34, 94-98, (1917)
    [2] W.T.Richards and A.L.Loomis, “The chemical effects of high frequency sound waves I. A preliminary survey”, Journal of the American Chemical Society, 49, 3086-3100, (1927)
    [3] P.R.Birkin, J.F.Power, A.M.L.Vincotte, and T.G.Leighton, “A 1 kHz resolution frequency study of a variety of sonochemical processes”, Physical Chemistry Chemical Physics, 5, 4170-4174, (2003)
    [4] P.R.Gogate, S.Mujumdar, and A.B.Pandit, “Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction”, Advances in Environmental Research, 7, 283-299, (2003)
    [5]姚明宗,“共振式聲化學反應器之分析與實驗”, 成功大學機械工程學系學位論文,1-88, (2009)
    [6] Y.C.Wang and M.C.Yao, “Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor”, Ultrasonics Sonochemistry, 20, 565-570, (2013)
    [7] O.Falou, “Modelling High Frequency Ultrasound Scattering From Cell and Ultrasound Contrast Agents”, A dissertation presented to Ryerson University, 1-104, (2003)
    [8] T.G.Leighton, “What is ultrasound?”, Progress in Biophysics and Molecular Biology, 93, 3-83, (2007)
    [9] K.F.Herzfeld and T.A.Litovitz, “Absorption and dispersion of ultrasonic waves.” Academic Press, 1-535, (1959)
    [10] B.Toukoniitty, J.P.Mikkola, D.Y.Murzin and T.Salmi, “Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions”, Applied Catalysis A: General, 279, 1-22, (2004)
    [11]K.R. Morison and C.A. Hutchinson, “Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation”, Ultrasonics Sonochemistry, 16, 176-183, (2009)
    [12] P.R.Gogate, I.Z.Shirgaonkar, P.Senthilkumar, N.P.Vichare and A.B.Pandit, “Cavitation reactors: Efficiency assessment using a model reaction”, AIChE Journal, 47, 2526-2538, (2001)
    [13] P.R.Gogate and A.B.Pandit, “Sonochemical reactors: scale up aspects”, Ultrasonics Sonochemistry, 11, 105-117, (2004)
    [14] D.E.Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison Wesley, (1989)
    [15] F.J.Keil, “Modeling of Process Intensification”, Wiley, (2007)
    [16] D.M.Kirpalani, K.J.McQuinn, “Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors”, Ultrasonics Sonochemistry, 13(1), 1-5, (2006)
    [17] K.S.Suslick, “The Chemical Effects of Ultrasound, Scientific American”, 260, 80-86, 1989.
    [18]周卓明“壓電力學”全華科技圖書股份有限公司(2003)
    [19]馮笠晏“高效率流室式聲化學反應器之研製”成功大學機械工程系學位論文,1-74. (2015)
    [20]吳柏憲“徑向超音坡發射器之研製”成功大學機械工程系學位論文,1-88. (2016)
    [21]朱贊宇“聲化學反應器中非均勻汽泡對聲場之影響”成功大學機械工程系學位論文,1-70. (2016)

    無法下載圖示 校內:2027-07-25公開
    校外:2027-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE