| 研究生: |
沈孟韋 Shen, Meng-Wei |
|---|---|
| 論文名稱: |
負勁度複合材料之相場模擬研究 PHASE FIELD MODELING OF NEGATIVE STIFFNESS COMPOSITE MATERIALS |
| 指導教授: |
王雲哲
Wang, Yun-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 鐵彈性材料 、鐵彈疇 、有限元素法 、負普松 、負勁度 、相場模擬 |
| 外文關鍵詞: | ferroelastic materials, ferroelastic domain, finite element method, auxetics, negative stiffness, phase field modeling |
| 相關次數: | 點閱:110 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由相場模擬方法探討二維鐵彈材料在鐵彈性相變情況時,其整體材料的力學性質變化。在本研究中並無直接使用負的彈性模數,主要探討因固-固相變所產生之負勁度效應。當模型同時受到外加應變與溫度變化的刺激下,可觀察到在相變附近時,整體材料因負勁度效應而使等效黏彈模數與阻尼有所提升,而這結果與實驗結果和古典複合材料理論對有負的模數情況下的預測一致。在整體模型所受溫度固定為0.5,也就是在系統具有兩個能量低點的情況下,不論外加力如何,可觀察到鐵彈疇的形成。若溫度固定為1.7,則不會有疇形成。而在只有溫度循環變化而無外力加載下,疇不會隨溫度變化而有消失與再形成現象。在同時有溫度循環與變形加載情況下,因在相變化附近所產生之負勁度效應,可發現在快速溫度變化下的單軸正弦加載可使等效勁度提高約15倍。而在其他像是雙軸剪力加載與二維體變形加載情況下,也可觀察到等效勁度的提升,但其提升幅度較單軸加載情況下低。此外,含裂紋的模型在相同條件下所觀察到的負勁度誘發之整體勁度提升幅度較正常相場模型來的低,且鐵彈疇相變會從裂紋尖端附近開始發生。而在泡沫鐵彈材料模型中,可觀察到無論是正普松還是負普松材料模型都與連續鐵彈體有類似的行為,但在泡沫模型中因相變所測得之等效應力變化會有因泡沫結構中枝幹影響而產生一些振盪情況。在一維鐵彈複合模型中,可觀察到在相變過程中,加載位移與鐵彈內含物的應力之間的關係相反。在相變發生時,可看到鐵彈內含物的應力會減少,而在彈性基材中在靠近加載點的應力卻有明顯增加。
This research studies the effects of ferroelastic phase transition on the overall mechanical properties of the 2D materials by the phase field simulation (PFS) method. Without directly using negative values in elastic moduli, PFS enables the study of negative-stiffness effects due to the phase transformation. Under simultaneous straining and temperature cycling, enhancements on effective viscoelastic modulus and damping in the vicinity of phase transition are observed, in consistence with classical composite theory with negative modulus and experiment. Regardless of externally applied stress, ferroelastic domains may be formed when constant temperature is set to T=0.5 since the system possessing two energy minimal points. If the constant temperature is set to be T=1.7, no domains will be formed. Under no external stresses, domains will not re-form under temperature cycling. The uniaxial deformation under the fast temperature rate may enhance effective stiffness due to the negative stiffness effects generated from phase transition by 15 folds. Enhancements on effective stiffness are also observed in biaxial shear and 2D bulk deformation, but their magnitudes are less than those in the uniaxial mode. The cracked ferroelastic materials show less NS-induced enhancement than those intact ones, and the domain evolution would start from crack tips. Foamed ferroelastic materials, auxetic or non-auxetic, show similar behavior as continuum ferroelastic media, but some oscillatory responses were observed in stress response of the foams, which may be due to the responses of each rib in the foam.
[1] Y. C.Wang and R. S. Lakes. Extreme stiffness systems due to negative stiffness elements. American Journal of Physics, 72(1):40–50, 2004.
[2] J. M. Gere and B. J. Goodno. Mechanics of Materials. Cengage Learning, 2008.
[3] R. S. Lakes. Extreme damping in composite materials with a negative stiffness phase. Physical Review Letters, 86(13):2897–2900, 2001.
[4] R. S. Lakes, T. Lee, A. Bersie, and Y. C.Wang. Extreme damping in composite materials with negative-stiffness inclusions. Nature, 410(6828):565–567, 2001.
[5] T. Jaglinski, D. M. Kochmann, D. Stone, and R. S. Lakes. Composite materials with viscoelastic stiffness greater than diamond. Science, 315(5812):620–622, 2007.
[6] L. Landau. Oe the theory of phase transitions. Zh. Eksp. Teor., 7:19–32, 1937.
[7] V. V. Novikov and K. W. Wojciechowski. Extreme viscoelastic properties of composites of strongly inhomogeneous structures due to negative stiffness phases. Physica Status Solidi (b), 242(3):645–652, 2005.
[8] J. E. Daniels, M. V. Manuel, C. W. Brink, and J. L. Jone. Phase transformation of constrained BaTiO3 particles in a Sn matrix. Scripta Materialia, 61:391–394, 2009.
[9] B. D. Poquette, T. A. Asare, J. P. Schultz, D. W. Brown, and S. L. Kampe. Domain reorientation as a damping mechanism in ferroelastic-reinforced metal matrix composites. Metallurgical and Materials Transactions A, 42A:2833–2842, 2011.
[10] R. S. Lakes. Extreme damping in compliant composites with a negative-stiffness phase. Philosophical Magazine Letters, 81(2):95–100, 2001.
[11] L. Dong and R. S. Lakes. Advanced damper with negative structural stiffness elements. Smart Materials and Structures, 21(7):075026, 2012.
[12] R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase? Journal of the Mechanics and Physics of Solids, 50(5):979–1009, 2002.
[13] W. J. Drugan. Elastic composite materials having a negative stiffness phase can be stable. Physical Review Letters, 98(5):055502, 2007.
[14] D. M. Kochmann and W. J. Drugan. Dynamic stability analysis of an elastic composite material having a negative-stiffness phase. Journal of the Mechanics and Physics of Solids, 57(7):1122–1138, 2009.
[15] D. M. Kochmann and W. J. Drugan. Analytical stability conditions for elastic composite materials with a non-positive-definite phase. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468(2144):2230–2254, 2012.
[16] R. S. Lakes and K. W. Wojciechowski. Negative compressibility, negative poisson’s ratio, and stability. Physica Status Solidi (b), 245(3):545–551, 2008.
[17] D. M. Kochmann and W. J. Drugan. Infinitely stiff composite via a rotation-stabilized negative-stiffness phase. Applied Physics Letters, 99(1):011909, 2011.
[18] Y. C. Wang and R. S. Lakes. Stability of negative stiffness viscoelastic systems. Quarterly of Applied Mathematics, 63(1):34–55, 2005.
[19] Y. C. Wang and R. S. Lakes. Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements. Applied Physics Letters, 84(22):4451–4453, 2004.
[20] D. M. Kochmann and G.W. Milton. Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. Journal of the Mechanics and Physics of Solids, 71:46–63, 2014.
[21] Y. C. Wang and C. C. Ko. Stability of viscoelastic continuum with negative-stiffness inclusions in the low-frequency range. Physica Status Solidi (b), 250(10):2070–2079, 2013.
[22] E. Salje. Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, Cambridge, UK, 1990.
[23] A. Onuki. Phase Transition Dynamics. Cambridge University Press, Cambridge, UK, 2002.
[24] J. C. Toledano and P. Toledano. The Landau Theory of Phase Transitions. World Scientific Publishing, Singapore, 1987.
[25] D. Schrade, R. Mueller, B. X. Xu, and D. Gross. Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation. Computer Methods in Applied Mechanics and Engineering, 196(41-44):4365–4374, 2007.
[26] W. Zhang and K. Bhattacharya. A computational model of ferroelectric domains. part i: model formulation and domain switching. Acta Materialia, 53(1):185–198, 2005.
[27] W. Zhang and K. Bhattacharya. A computational model of ferroelectric domains. part ii: grain boundaries and defect pinning. Acta Materialia, 53:199–209, 2005.
[28] W. D. Dong, D. M. Pisani, and C. S. Lynch. A finite element based phase field model for ferroelectric domain evolution. Smart Mater. Struct., 21:094014, 2012.
[29] A. Planes, P. Lloveras, T. Castan, A. Saxena, and M. Porta. Ginzburg-landau modelling of precursor nanoscale textures in ferroelastics materials. Continuum Mechanics and Thermodynanmics, 24:619–627, 2012.
[30] J. Wang, W. Shu, T. Shimada, T. Kitamura, and T. Y. Zhang. Role of grain orientation distribution in the ferroelectric and ferroelastic domain switching of ferroelectric polycrystals. Acta Materialia, 61:6037–6049, 2013.
[31] Y. Su, N. Liu, and G. J. Weng. A phase field study of frequency dependence and grainsize effects in nanocrystalline ferroelectric polycrystals. Acta Materialia, 87:293–308, 2015.
[32] COMSOL. Website. http://www.comsol.com, 2017.
[33] K. E. Atkinson. An introduction to numerical analysis. Wiley, Singapore, 1989.
[34] L. Meirovitch. Analytical Methods in Vibrations. Macmillan Publishing Co. Inc, 1967.
[35] M. Mamivand, M. A. Zaeem, and H. E. Kadiri. Phase field modeling of stressinduced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Mater., 64:208–219, 2014.
[36] M. Mamivand, M. A. Zaeem, and H. E. Kadiri. Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: a phase field study. Int. J. Plasticity, 60:71–86, 2014.
[37] L. Dong, D. S. Stone, and R. S. Lakes. Giant anelastic responses in (BaZrO3–ZnO)–BaTiO3 composite materials. Europhysics Letters, 93(6):66003, 2011.
[38] L. Dong, D. S. Stone, and R. S. Lakes. Viscoelastic, dielectric, and thermal properties of BaTiO3-3%KNbO3. Physica Status Solidi (b), 248(1):158–166, 2011.
[39] L. Dong, D. S. Stone, and R. S. Lakes. Enhanced dielectric and piezoelectric properties of xBaTiO3-(1-x)BaTiO3. Journal of Applied Physics, 111:084107, 2012.
[40] A. Karma, D. A. Kessler, and H. Levine. Phase-field model of mode III dynamic fracture. Physical Review Letters, 84:045501, 2001.
[41] C. Kuhn and R. Muller. A continuum phase field model for fracture. Engineering Fracture Mechanics, 77:3625–3634, 2010.
[42] Y. Hou, L. Zhang, P. Yue, T. Pauli, F. Sun, and L. Wang. Mode II cracking failure in asphalt concrete by using a non-conserved phase field model. Multi-Scale Model. and Charact. of Infrastruct. Mater., 8:127–138, 2013.