簡易檢索 / 詳目顯示

研究生: 陳姵君
Chen, Pei-Chun
論文名稱: 石墨烯奈米複合物應用於環境中毒性汙染物之電化學及螢光偵測
Graphene-based nanohybrids for electrochemical and fluorescent detection of toxic contaminants in environment
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 石墨烯奈米碳管有機磷農藥巴賽松電化學感測石墨烯量子點環糊精螢光感測
外文關鍵詞: reduced graphene oxide, carbon nanotube, organophosphate pesticides, phoxim, electrochemical detection, graphene quantum dots, β-cyclodextrin, fluorescent detection
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部分將沉積於網版印刷碳電極(SPCE)上之氧化石墨烯-奈米碳管(GO-CNT)電化學還原成三維之還原氧化石墨烯-奈米碳管(rGO-CNT),製得rGO-CNT/SPCE,用於有機磷農藥(巴賽松)之非酵素電化學偵測。奈米碳管的存在可導致三維結構的形成,使rGO的表面積可被更有效的用於巴賽松的吸附與感測,以改善其靈敏度。結果證實,奈米碳管確實均勻的分散在GO表面,且GO已成功利用電化學還原法還原為rGO。rGO-CNT/SPCE用於巴賽松的電化學偵測係在pH 7.0之0.1 M磷酸鹽緩衝溶液中以微分脈衝伏安法(DPV)進行,結果顯示巴賽松濃度之線性範圍為0.005~5 μM,偵測極限則為0.002 μM。而在真實水樣品與干擾物測試之結果,rGO-CNT/SPCE亦展現良好之性能,顯示其確可作為良好的電化學偵測平台,有效地應用於有機磷農藥的偵測與環境監控。
    在第二部分研究中,將檸檬酸與β-環糊精(βCD)於200oC下直接加熱製得粒徑約9 nm之βCD修飾石墨烯量子點 (βCD-GQD),用於毒性有機汙染物的螢光偵測。結果發現,βCD修飾可顯著提升GQD的螢光強度,且用於硝基苯酚的螢光偵測時,在0.1~7.5 μM及7.5~100 μM兩段濃度範圍具有良好的線性關係,偵測極限為0.093 μM。此性能明顯較無βCD修飾之石墨烯量子點為佳,顯示所發展之βCD-GQD在螢光偵測確實具有應用潛力。

    Firstly, three-dimensional (3D) reduced graphene oxide-carbon nanotube (rGO-CNT) nanocomposite was fabricated via the electrochemical reduction of graphene oxide-carbon nanotube (GO-CNT) on the screen printed carbon electrode (SPCE) to yield the rGO-CNT/SPCE for the electrochemical detection of phoxim. The presence of carbon nanotubes (CNTs) could lead to the formation of 3D structure, making the surface area of rGO can be utilized more efficiently to improve the sensitivity. It was demonstrated that CNTs were uniformly dispersed on GO, and GO has been electrochemically reduced to rGO. The electrochemical detection of phoxim on rGO-CNT/SPCE was performed in 0.1 M phosphate buffer at pH 7.0 by differential pulse voltammetry. A linear concentration range of 0.005~5 μM with a limit of detection (LOD) of 0.002 μM was obtained. For the detection of real samples and interference test, rGO-CNT/SPCE also exhibited an excellent performance. This revealed that it indeed could be used for the electrochemical detection and environmental monitoring of organophosphate pesticides. Secondly, β-cyclodextrin-modified graphene quantum dots (βCD-GQD) of about 9 nm were synthesized by the direct heating of citric acid and βCD at 200oC for the fluorescent detection of p-nitrophenol. The modification with βCD could significantly enhance the fluorescence intensity of GQD. Furthermore, for the fluorescent detection of by βCD-GQD, two linear concentration ranges of 0.1~7.5 μM and 7.5~100 μM with a LOD of 0.093 μM were obtained. The performance was significantly better than the un-modified GQD, revealing the resulting βCD-GQD indeed could be utilized in the fluorescent detection of toxic organic contaminants.

    中文摘要 I Abstract II Extended Abstract IV 致謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 感測器簡介 1 1.1.1 電化學感測器 3 1.1.2 螢光化學感測器 4 1.2 農藥簡介 6 1.2.1 有機磷農藥 6 1.2.2 巴賽松 7 1.2.3 有機磷農藥分析方式 7 1.3 石墨烯 10 1.4 奈米碳管 18 1.5 石墨烯量子點 22 1.6 β-環糊精 24 1.7 研究動機 25 第二章 基礎理論 27 2.1 循環伏安法 27 2.2 微分脈衝伏安法 30 2.3 螢光原理 32 第三章 實驗 33 3.1 藥品與儀器 33 3.1.1 藥品 33 3.1.2 儀器 34 3.1.3 其他材料 35 3.2 實驗方法 36 3.2.1 巴賽松之電化學感測 36 3.2.2 β-環糊精修飾石墨烯量子點之螢光感測 43 3.3 材料分析 46 3.3.1 巴賽松電化學感測之實驗分析 46 3.3.2 β-環糊精修飾石墨烯量子點之螢光感測分析 47 第四章 結果與討論 48 4.1 巴賽松感測之電化學分析結果 48 4.1.1 工作電極前處理 48 4.1.2 材料鑑定 51 4.1.3 巴賽松之電化學感測 61 4.2 β-環糊精修飾石墨烯量子點之螢光感測分析結果 71 4.2.1 材料鑑定 71 4.2.2 β-環糊精-石墨烯量子點之螢光感測分析結果 75 第五章 結論 80 參考文獻 82

    [1] 柯富祥,漫談生物分子感測器,奈米通訊,14,3,2007.
    [2] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5rd ed., Brooks Cole, 1997.
    [3] H. Kaiser, Quantitation in elemental analysis, Anal. Chem., 42, 24A-41A, 1970.
    [4] W. Göpel, K.D. Schierbaum, Definitions and Typical Examples, 1st ed., Wiley-VCH, 2008.
    [5] W. Göpel, J. Hesse, J.N. Zemel, Liquid Electrolyte Sensors: Potentiometry, Amperometry, and Conductometry, 1st ed., Wiley-VCH, 2008.
    [6] 施正雄,化學感測器,1st ed.,五南圖書出版股份有限公司,2015.
    [7] J. Upan, P. Reanpang, O. Chailapakul, J. Jakmunee, Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone, Talanta, 146, 766-771, 2016.
    [8] C. Li, C. Wang, Y. Ma, W. Bao, S. Hu, A novel amperometric sensor and chromatographic detector for determination of parathion, Anal. Bioanal. Chem., 381, 1049-1055, 2005.
    [9] G. Aragay, F. Pino, A. Merkoci, Nanomaterials for sensing and destroying pesticides, Chem. Rev., 112, 5317-5338, 2012.
    [10] P. Kumar, K.H. Kim, A. Deep, Recent advancements in sensing techniques based on functional materials for organophosphate pesticides, Biosens. Bioelectron., 70, 469-481, 2015.
    [11] K.T. C., Organophosphate pesticides: biochemistry and clinical toxicology, Ther. Drug Monit., 24, 144-149, 2002.
    [12] A.G. Smith, S.D. Gangolli, Organochlorine chemicals in seafood: occurrence and health concerns, Food Chem. Toxicol., 40, 767–779, 2002.
    [13] 行政院農業委員會,農業藥物毒物試驗所,http://www.tactri.gov.tw/wSite/ct?xItem=5637&ctNode=286&mp=11.
    [14] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669, 2004.
    [15] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191, 2007.
    [16] 蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,33,163-167, 2011.
    [17] 蘇清源,石墨烯量產技術與產業應用,光連雙月刊,108,61-71,2013.
    [18] 莊鎮文,石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,物理雙月刊,33,145-256,2011.
    [19] S.K. Vashist, J.H.T. Luong, Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites, Carbon, 84, 519-550, 2015.
    [20] C.N.R. Rao, A.K. Sood, R. Voggu, K.S. Subrahmanyam, Some novel attributes of graphene, J. Phys. Chem. Lett., 1, 572-580, 2010.
    [21] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
    [22] Y. Qiu, F. Guo, R. Hurt, I. Kulaots, Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications, Carbon, 72, 215-223, 2014.
    [23] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565, 2007.
    [24] A. Al-Hamry, H. Kang, E. Sowade, V. Dzhagan, R.D. Rodriguez, C. Müller, D.R.T. Zahn, R.R. Baumann, O. Kanoun, Tuning the reduction and conductivity of solution-processed graphene oxide by intense pulsed light, Carbon, 102, 236-244, 2016.
    [25] D.S. Eom, J. Chang, Y.W. Song, J.A. Lim, J.T. Han, H. Kim, K. Cho, Coffee-ring structure from dried graphene derivative solutions: a facile one-step fabrication route for all graphene-based transistors, J. Phys. Chem. C Nanomater. Interfaces, 118, 27081-27090, 2014.
    [26] L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 131, 11027-11032, 2009.
    [27] H. Guo, M. Peng, Z. Zhu, L. Sun, Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction, Nanoscale, 5, 9040-9048, 2013.
    [28] P. Kumar, K.S. Subrahmanyam, C.N.R. Rao, Graphene produced by radiation-induced reduction of graphene oxide, Int. J. Nanosci., 10, 559-566, 2011.
    [29] F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide, J. Chem., 6, 1-6, 2012.
    [30] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater., 19, 1987-1992, 2009.
    [31] A. Fei, Q. Liu, J. Huan, J. Qian, X. Dong, B. Qiu, H. Mao, K. Wang, Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites, Biosens. Bioelectron., 70, 122-129, 2015.
    [32] M.S. Prasad, K. Krishnaveni, M. Dhananjayulu, V. Sreenivasulu, N.Y. Sreedhar, The simultaneous determination of omethoate and dichlorvos pesticides in grain samples using a palladium and graphene composite modified glassy carbon electrode, RSC Adv., 5, 21909-21915, 2015.
    [33] N.Y. Sreedhar, M. Sunil Kumar, K. Krishnaveni, Sensitive determination of chlorpyrifos using Ag/Cu alloy nanoparticles and graphene composite paste electrode, Sens. Actuators B Chem., 210, 475-482, 2015.
    [34] P. Noyrod, O. Chailapakul, W. Wonsawat, S. Chuanuwatanakul, The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor, J. Electroanal. Chem., 719, 54-59, 2014.
    [35] M. Wang, J. Huang, M. Wang, D. Zhang, J. Chen, Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables, Food Chem., 151, 191-197, 2014.
    [36] W. Zhou, C. Sun, Y. Zhou, X. Yang, W. Yang, A facial electrochemical approach to determinate bisphenol A based on graphene-hypercrosslinked resin MN202 composite, Food Chem., 158, 81-87, 2014.
    [37] T. Gan, J. Sun, W. Meng, L. Song, Y. Zhang, Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food, Food Chem., 141, 3731-3737, 2013.
    [38] M. Yun, J.E. Choe, J.M. You, M.S. Ahmed, K. Lee, Z. Ustundag, S. Jeon, High catalytic activity of electrochemically reduced graphene composite toward electrochemical sensing of Orange II, Food Chem., 169, 114-119, 2015.
    [39] G. Xu, Y. Chi, L. Li, S. Liu, X. Kan, Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film, Food Chem., 177, 37-42, 2015.
    [40] W. Zhu, T. Chen, X. Ma, H. Ma, S. Chen, Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode, Colloids Surf. B. Biointerfaces, 111, 321-326, 2013.
    [41] J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, Y. Du, Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 53, 220-224, 2014.
    [42] H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide, RSC Adv., 4, 26895, 2014.
    [43] J. Jiang, X. Du, Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites, Nanoscale, 6, 11303-11309, 2014.
    [44] K.I. Hsu, C.W. Lien, C.H. Lin, H.T. Chang, C.C. Huang, Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions, RSC Adv., 4, 37705, 2014.
    [45] Y. Wang, C.y. Bi, A novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/Au nanoparticles/multiwalled carbon nanotubes nanocomposite film, RSC Adv., 4, 31573, 2014.
    [46] X. Gong, Y. Bi, Y. Zhao, G. Liu, W.Y. Teoh, Graphene oxide-based electrochemical sensor: a platform for ultrasensitive detection of heavy metal ions, RSC Adv., 4, 24653, 2014.
    [47] A.M. Golsheikh, N.M. Huang, H.N. Lim, R. Zakaria, One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver nanoparticles for non-enzymatic detection of H2O2and optical detection of mercury ions, RSC Adv., 4, 36401-36411, 2014.
    [48] N. Agnihotri, A.D. Chowdhury, A. De, Non-enzymatic electrochemical detection of cholesterol using beta-cyclodextrin functionalized graphene, Biosens. Bioelectron., 63, 212-217, 2015.
    [49] K.J. Huang, Y.J. Liu, J.T. Cao, H.B. Wang, An aptamer electrochemical assay for sensitive detection of immunoglobulin E based on tungsten disulfide–graphene composites and gold nanoparticles, RSC Adv., 4, 36742, 2014.
    [50] H.F. Zhao, R.P. Liang, J.W. Wang, J.D. Qiu, One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity, Biosens. Bioelectron., 63, 458-464, 2015.
    [51] J. Gao, Z. Guo, F. Su, L. Gao, X. Pang, W. Cao, B. Du, Q. Wei, Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of beta-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody, Biosens. Bioelectron., 63, 465-471, 2015.
    [52] L. Liu, J. Zhai, C. Zhu, Y. Gao, Y. Wang, Y. Han, S. Dong, One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation, Biosens. Bioelectron., 63, 483-489, 2015.
    [53] H.D. Jang, S.K. Kim, H. Chang, J.W. Choi, 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites, Biosens. Bioelectron., 63, 546-551, 2015.
    [54] D. Wang, W. Hu, Y. Xiong, Y. Xu, C.M. Li, Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B(1), Biosens. Bioelectron., 63, 185-189, 2015.
    [55] 陳東煌,黃世宏,教育部「生物及醫學科技人才培育先導型計畫」生醫奈米技術,第六章,2007.
    [56] 黃世宏,奈米粉體在分離上及電化學感測上之應用研究,國立成功大學化學工程所博士論文,2009.
    [57] E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine, J. Biomed. Nanotechnol., 1, 3-17, 2005.
    [58] 李明威,教育部「生物及醫學科技人才培育先導型計畫」生醫奈米技術,第五章,2007.
    [59] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 605-607, 1993.
    [60] H. Dai, Nanotube Growth and Characterization, 1st ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
    [61] C. Zhang, L. Ren, X. Wang, T. Liu, Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media, J. Phys. Chem. C Nanomater. Interfaces, 114, 11435-11440, 2010.
    [62] L. Tian, M.J. Meziani, F. Lu, C.Y. Kong, L. Cao, T.J. Thorne, Y.P. Sun, Graphene oxides for homogeneous dispersion of carbon nanotubes, ACS Appl. Mater. Interfaces, 2, 3217-3222, 2010.
    [63] A. Kelarakis, Graphene quantum dots: in the crossroad of graphene, quantum dots and carbogenic nanoparticles, Curr. Opin. Colloid Interface Sci., 20, 354-361, 2015.
    [64] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon, 50, 4738-4743, 2012.
    [65] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem., 2, 1015-1024, 2010.
    [66] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc., 126, 12736-12737, 2004.
    [67] S.Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization, Science, 323, 1319-1323, 2009.
    [68] S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights, Angew. Chem. Int. Ed. Engl., 49, 6726-6744, 2010.
    [69] S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds:  no photobleaching and low cytotoxicity, J. Am. Chem. Soc., 127, 17604-17605, 2005.
    [70] Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C.M. Li, One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black, J. Mater. Chem., 22, 8764, 2012.
    [71] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater., 22, 734-738, 2010.
    [72] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots, Science, 320, 356-358, 2008.
    [73] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Lett., 12, 844-849, 2012.
    [74] E.M.M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem., 39, 1033-1046, 2004.
    [75] G. Zolfaghari, β-cyclodextrin incorporated nanoporous carbon: Host–guest inclusion for removal of p-nitrophenol and pesticides from aqueous solutions, Chem. Eng. J., 283, 1424-1434, 2016.
    [76] E. Jalalvandi, J. Cabral, L.R. Hanton, S.C. Moratti, Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery, Mater. Sci. Eng. C Mater. Biol. Appl., 69, 144-153, 2016.
    [77] J. Gong, X. Han, X. Zhu, Z. Guan, Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-beta-cyclodextrin for selective capacitive sensing of acephatemet, Biosens. Bioelectron., 61, 379-385, 2014.
    [78] 胡啟章,電化學原理與方法,2nd ed.,五南圖書出版有限公司,2011.
    [79] D. K., J. Gosser, Cyclic voltammetry—simulation and analysis of reaction mechanisms, Electroanalysis, 7, 298-298, 1995.
    [80] L.R. Faulkner, A.J. Bard, Electrochemical Methods: Fundamental and Applications, 2nd ed., John Wiley & Sons, 2001.
    [81] R. Kalvoda, Electrochemical analytical methods used in environmental analysis, Sci. Total Environ., 37, 3-7, 1984.
    [82] K. Skrzypczyńska, K. Kuśmierek, A. Świątkowski, Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry, J. Electroanal. Chem., 766, 8-15, 2016.
    [83] M. Roushani, A. Valipour, Z. Saedi, Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode, Sens. Actuators B Chem., 233, 419-425, 2016.
    [84] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springers, 2006.
    [85] Y. Wang, K.M. Wang, G.l. Shen, R.Q. Yu, A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin, Talanta, 44, 1319-1327, 1997.
    [86] S. Paliwal, M. Wales, T. Good, J. Grimsley, J. Wild, A. Simonian, Fluorescence-based sensing of p-nitrophenol and p-nitrophenyl substituent organophosphates, Anal. Chim. Acta, 596, 9-15, 2007.
    [87] K.C. Hsu, D.H. Chen, Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity, Nanoscale Res. Lett., 9, 1-9, 2014.
    [88] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene, Nano Lett., 7, 238-242, 2007.
    [89] N.H. Kim, T. Kuila, J.H. Lee, Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application, J. Mater. Chem. A Mater. Energy Sustain., 1, 1349-1358, 2013.
    [90] Y. Zheng, A. Wang, H. Lin, L. Fu, W. Cai, A sensitive electrochemical sensor for direct phoxim detection based on an electrodeposited reduced graphene oxide–gold nanocomposite, RSC Adv., 5, 15425-15430, 2015.
    [91] X. Lu, H. Bai, Q. Ruan, M. Yang, G. Yang, L. Tan, Y. Yang, Direct determination of pesticides in vegetable samples using gold nanoelectrode ensembles, Int. J. Environ. Anal. Chem., 88, 813-824, 2008.
    [92] M. Chao, M. Chen, Electrochemical determination of phoxim in food samples employing a graphene-modified glassy carbon electrode, Food Anal. Methods, 7, 1729-1736, 2014.
    [93] L. Wu, W. Lei, Z. Han, Y. Zhang, M. Xia, Q. Hao, A novel non-enzyme amperometric platform based on poly(3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim, Sens. Actuators B Chem., 206, 495-501, 2015.
    [94] T. Zhang, L. Zeng, L. Han, T. Li, C. Zheng, M. Wei, A. Liu, Ultrasensitive electrochemical sensor for p-nitrophenyl organophosphates based on ordered mesoporous carbons at low potential without deoxygenization, Anal. Chim. Acta, 822, 23-29, 2014.
    [95] J. Dong, J. Hou, J. Jiang, S. Ai, Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe, Anal. Chim. Acta, 885, 92-97, 2015.

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE