研究生: |
林筱涵 Lin, Shiao-Han |
---|---|
論文名稱: |
都市垃圾焚化反應飛灰資源化 Recovery of Reaction Fly Ash from Municipal Solid Waste Incinerator |
指導教授: |
申永輝
Shen, yun-hwei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 反應飛灰 、濕法冶金 、循環經濟 、鈣回收 、離子交換樹脂 、化學沉澱 |
外文關鍵詞: | Reaction ash, valuable metals, Recycling engineering, circular economy, Hydrometallurgical, ion exchange resin, chemical precipitation |
相關次數: | 點閱:88 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了更有效的處理都市固體廢棄物,常以垃圾焚化的方式處理,在焚化過程中產生了飛灰和底渣等副產物,底渣和飛灰分別約佔總灰渣產生重量的80%和20%,其中飛灰因殘留大量之有害物質被歸類為有害廢棄物,同時這些灰渣最終會被送到掩埋場掩埋,為了改善土地掩埋空間不足等問題,以及促進資源循環政策和技術的發展,處理飛灰降低其危害性,並進一步再利用成為迫切需要解決的問題,台灣對於焚化爐產生之飛灰都是以固化後掩埋作為最終處置,其資源化技術尚未成熟,目前已知在飛灰資源化的過程中通常會以水洗進行前處理,而產生的大量廢水中含有高濃度的鹽類和低至中等濃度的有毒重金屬,若未妥善處理即排,放將造成環境汙染。綜觀上述,本研究將以飛灰的減重減量及改善預處理步驟造成的成本浪費並以資源循環的角度進行探討,以減少掩埋量與環境污染,並回收再利用其中的物質,使用濕法冶金之方式以浸漬和化學沉澱及離子交換樹脂之方法分離純化飛灰中的成分,將回收其鈣成份來生成氫氧化鈣並重新投入到焚化爐酸洗塔中再利用,並且使用離子交換和化學沉澱相結合之回收方法可以有最佳之效果,IRC748螯合型樹脂以此方式處理酸浸液取得了很好的結果,不僅可分離鈣減少淤泥量,交換尾液可透過化學沉澱方式處理回收鈣,並且吸附之其他金屬可脫附並富集處理,提高了酸浸液再利用率達到資源循環,針對浸漬液再利用,選擇酸浸液之方式不僅比水洗液有更高減重減量效果,泥餅中重金屬含量也相對減少,且此方式透過結合離子交換與化學沉澱可以得到氫氧化鈣產物的純度為98%,水洗液則會有共沉和樹脂無法再生之問題。
關鍵字: 反應飛灰、濕法冶金、循環經濟、鈣回收、離子交換樹脂、化學沉澱
During the incineration process, by-products such as fly ash and bottom slag are produced. 20% of which fly ash is classified as hazardous waste due to the large amount of hazardous substances remaining. At the same time, the ash will eventually be sent to the landfill for burying. In order to improve the problem of insufficient land burial space and promote the development of resource recycling policies and technologies, the treatment of fly ash to reduce its harm, and further reuse has become an urgent problem to be solved. Taiwan's solidification and burial of incinerator fly ash is the final disposal. At present, it is known that in the process of recovering fly ash, water washing is usually used for pretreatment, and the large amount of waste water produced contains high concentration of salt and medium and low concentration of toxic heavy metals.
This research will focus on reducing the weight of fly ash and improving the cost waste caused by pretreatment steps, and discuss reducing the amount of landfill and environmental pollution from the perspective of resource recovery, and recycling the materials into secondary materials. Using hydrometallurgy to deal with fly ash, through leaching, chemical precipitation and ion exchange resin to separate and purify the components in fly ash. The calcium component will be recycled to produce calcium hydroxide and re-invested in the pickling tower of the incinerator for reuse.
And the use of a combination of ion exchange and chemical precipitation can have the best results. IRC748 chelating resin has achieved good results in treating acid leaching liquid in this way. It can not only separate calcium and reduce the amount of sludge, but also can recovered Calcium by used chemical precipitation to treatment the exchange tail liquid , and other adsorbed metals can be desorbed and enriched, which improves the reuse rate of acid leaching solution and achieves resource recycling. For the reuse of leaching liquid , choose acid leaching is better than water washing ,because it has a higher volume reduction effect, and the content of heavy metals in the mud cake is relatively reduced. In this way, the purity of the calcium hydroxide product can be obtained by combining ion exchange and chemical precipitation with a purity of 98%. The washing liquid will have problem with co-precipitation and the resin cannot be regenerated.
Keywords:Reaction ash、valuable metals、Recycling engineering、circular economy、Hydrometallurgical、ion exchange resin、chemical precipitation
1. 世界銀行, Solid Waste Management. 2019.
2. 行政院環保署, 垃圾焚化營運年報. 2019.
3. Chen, W.; Kirkelund, G. M.; Jensen, P. E.; Ottosen, L. M., Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions. Waste Management 2018, 71, 215-223.
4. Comans, R. N.; Meima, J. A.; Geelhoed, P. A., Reduction of contaminant leaching from MSWI bottom ash by addition of sorbing components. Waste Management 2000, 20 (2-3), 125-133.
5. del Toro, M. A.; Calmano, W.; Ecke, H., Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes. Waste management 2009, 29 (9), 2494-2499.
6. Dontriros, S.; Likitlersuang, S.; Janjaroen, D., Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions. Waste Management 2020, 101, 44-53.
7. Luo, H.; Cheng, Y.; He, D.; Yang, E.-H., Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the total environment 2019, 668, 90-103.
8. Meima, J. A.; Comans, R. N., Overview of geochemical processes controlling leaching characteristics of MSWI bottom ash. In Studies in environmental science, Elsevier: 1997; Vol. 71, pp 447-457.
9. Nithiya, A.; Saffarzadeh, A.; Shimaoka, T., Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash. Waste Management 2018, 73, 342-350.
10. Santos, R. M.; Mertens, G.; Salman, M.; Cizer, Ö.; Van Gerven, T., Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Journal of environmental management 2013, 128, 807-821.
11. Ye, Z.-L.; Xie, X.; Dai, L.; Wang, Z.; Wu, W.; Zhao, F.; Xie, X.; Huang, S.; Liu, M.; Chen, S., Full-scale blending treatment of fresh MSWI leachate with municipal wastewater in a wastewater treatment plant. Waste management 2014, 34 (11), 2305-2311.
12. 林奇瑩, 利用電沉積法處理經酸洗後 MSWI 飛灰回收液之重金屬效能研究. 中興大學環境工程學系所學位論文 2009, 1-114.
13. 吳美慧, 評估經連續性水洗類分裝置處理後垃圾焚化飛灰粉體之再利用性. 屏東科技大學環境工程與科學系所學位論文 2010, 1-84.
14. 曾聖閔, 都市垃圾焚化飛灰水萃液中鉛離子回收再利用之研究. 淡江大學水資源及環境工程學系碩士班學位論文 2010, 1-88.
15. Quina, M. J.; Bontempi, E.; Bogush, A.; Schlumberger, S.; Weibel, G.; Braga, R.; Funari, V.; Hyks, J.; Rasmussen, E.; Lederer, J., Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci Total Environ 2018, 635, 526-542.
16. Commission, E., Circular economy action plan. 2020.
17. Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D. C. W., Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J Hazard Mater 2021, 411, 125132.
18. 台南市永康垃圾資源回收焚化廠, 焚化廠處理流程. 2020.
19. 達和環保服務股份有限公司, 焚化廠處理流程. 2020.
20. Quina, M. J.; Bordado, J. C.; Quinta-Ferreira, R. M., Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 2008, 28 (11), 2097-121.
21. 劉厚伯, 垃圾焚化飛灰產製鈣矽水合材料及氯鹽穩定化之探討. 國立成功大學環境工程學系碩士論文 2019.
22. Dou, X.; Ren, F.; Nguyen, M. Q.; Ahamed, A.; Yin, K.; Chan, W. P.; Chang, V. W.-C., Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews 2017, 79, 24-38.
23. Syc, M.; Simon, F. G.; Hyks, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M., Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J Hazard Mater 2020, 393, 122433.
24. Al-Ghouti, M. A.; Khan, M.; Nasser, M. S.; Al-Saad, K.; Heng, O. E., Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environmental Technology & Innovation 2020.
25. Siddique, R., Utilization of municipal solid waste (MSW) ash in cement and mortar. Resources, Conservation and Recycling 2010, 54 (12), 1037-1047.
26. 行政院環保署, 資源循環一般廢棄物管理. 2021.
27. 行政院環保署, 資源回收再利用推動計畫. 2021.
28. Bagastyo, A. Y.; Anggrainy, A. D.; Nindita, C. S., Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater. Sustainable Environment Research 2017, 27 (5), 230-237.
29. Bakalár, T.; Pavolová, H.; Hajduová, Z.; Lacko, R.; Kyšeľa, K., Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy. Journal of Cleaner Production 2021, 302, 126977.
30. Kuboňová, L.; Langová, Š.; Nowak, B.; Winter, F., Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash. Waste Management 2013, 33 (11), 2322-2327.
31. Tang, J.; Su, M.; Wu, Q.; Wei, L.; Wang, N.; Xiao, E.; Zhang, H.; Wei, Y.; Liu, Y.; Ekberg, C., Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. Journal of Cleaner Production 2019, 234, 139-149.
32. 汤秀华, 纳米碳酸钙的制备及应用评述. 四川化工 2006, 9 (4), 20-23.
33. 郑丽婷; 刘阳生, 从垃圾焚烧飞灰中回收金属研究进展. 环境工程 2008, 1.
34. 行政院環保署, 灰渣產量與流向. 2020.
35. Huang, C. M.; Yang, W. F.; Ma, H. W.; Song, Y. R., The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag 2006, 26 (9), 979-87.
36. Azzouzi, A.; Benchikhi, M.; El Ouatib, R., Room-temperature co-precipitation synthesis of (Ca, Sr, Ba) WO4 solid solutions: Structural refinement, morphology and band gap tuning. Ceramics International 2020, 46 (15), 23706-23718.
37. Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering 2018, 26, 289-300.
38. Hadfi, A.; Ben-Aazza, S.; Karmal, I.; Mohareb, S.; El Housse, M.; Hafid, N.; Driouiche, A., Efficiency of one scale inhibitor on calcium carbonate precipitation from hot water sanitary: effect of temperature and concentration. Heliyon 2021, 7 (2), e06152.
39. LeVan, M. D.; Carta, G.; Yon, C. M., Adsorption and ion exchange. Energy 1997, 16, 17.
40. Ni, S.; Wu, C.; Wang, Y.; Guo, X.; Zhao, Z.; Sun, X., An extraction and precipitation process for the removal of Ca and Mg from ammonium sulfate rare earth wastewaters. Hydrometallurgy 2019, 187, 63-70.
41. Quintero, C.; Dahlkamp, J. M.; Fierro, F.; Thennis, T.; Zhang, Y.; Videla, A.; Rojas, R., Development of a co-precipitation process for the preparation of magnesium hydroxide containing lithium carbonate from Li-enriched brines. Hydrometallurgy 2020, 198, 105515.
42. Reyes-Serrano, A.; López-Alejo, J. E.; Hernández-Cortázar, M. A.; Elizalde, I., Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca (OH) 2. Chinese Journal of Chemical Engineering 2020, 28 (4), 1107-1111.
43. 张嫦; 吴莉莉; 周小菊; 刘东, 过氧化钙的制备及其在废水处理中的应用. 化工环保 2004, 24 (1), 62-65.
44. 楊守志, 濕法冶金技術叢書. 2003.
45. Monhemius, J., <Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates.pdf>. Transactions Institution of Mining & Metallurgy 1977, 86(Section C):C202-C206.
46. <金屬氫氧化物、硫化物、砷酸鹽和磷酸鹽的沉澱圖.pdf>.