| 研究生: |
黃揚倫 Huang, Yang-Lun |
|---|---|
| 論文名稱: |
利用田口方法分析具有應變矽N型MOSFET於矽碳源/汲極(SiC S/D)與接觸蝕刻停止層(CESL)應力源作用之最佳化設計 Analysis on Optimal Design of Stressor on the Silicon-Carbon Alloy Source/Drain and the Contact Etch Stop Layer of Strained Silicon NMOSFET through Taguchi Method |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 應變矽技術 、晶格不匹配 、載子遷移率 、田口方法 |
| 外文關鍵詞: | Strained Technology, Lattice-mismatched, Carrier Mobility, Taguchi Methods |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,電子產品不斷追求高性能、低成本、薄小化及多樣化,半導體元件尺寸的微縮已不是唯一的方式,導入應變矽技術能有效提升元件效能且成本不高。因此,應變矽技術為現今半導體研究發展的重要方向之一。
應變矽技術藉由應力源對矽通道產生拉伸或壓縮應力的方式來提升元件載子遷移率。本文使用ANSYS 12.0有限元素分析軟體,模擬分析局部應變矽技術中含碳量1.3%的矽碳源/汲極(SiC S/D)應力源及1GPa拉伸應力的接觸蝕刻停止層(CESL)應力源,對NMOS通道產生之應力作用,及探討兩者應力源彼此對通道應力分佈情形的影響。然後,與文獻進行驗證評估。
其次,針對NMOS結構中的S/D深度、S/D長度、S/D高度、S/D碳含量、閘極長度、閘極高度、通道長度、通道寬度、Spacer形狀、CESL厚度等十個因子進行單一因子分析,藉由壓阻係數及各方向應力值來評估各因子對載子遷移率增益的影響。分析結果顯示,增加S/D深度、增加S/D碳含量、減少閘極長度、增加閘極高度、減少通道長度、增加通道寬度,皆能有效提升遷移率。
最後,利用田口品質工程方法,透過直交表實驗及變異數分析找出重要因子與最佳製程參數組合,以達到提升載子遷移率之目的。最佳製程參數組合的載子遷移率增益為27.19%,而原始製程參數設計為20.16%,提升了34.87%,對NMOS元件效能有明顯之改善。
With the development of science and technology, high-performance, low cost, mini-size and multi-functions have become the consistent goals for the electronic products. To reach these goals, Scaling down the size of the semiconductor device shouldn’t be the only way anymore. Instead, strained technology is capable to effectively enhance device performance and lower cost. Therefore, strained technology is recognized as an important direction of semiconductor research and development nowadays.
For the strained technology, the stressor is applied to induce tensile stress or compressive stress in Si channel to enhance the carrier mobility of components. By adopting the ANSYS 12.0 finite element analysis software, this study simulates the stresses induced by the silicon-carbon alloy source/drain(SiC S/D) stressor with the carbon content of 1.3% and 1GPa tensile stress contact etch stop layer (CESL) stressor in NMOS Si channel. Besides, the effects of two stressors on the stress distribution in the channel are investigated. Then, the result is verified and evaluated with literatures.
Secondarily, the single-factor analyses for 10 factors in the NMOS Structure, S/D depth, S/D length, S/D height, S/D carbon content, gate length, gate height, channel length, channel width, spacer shape and CESL thickness are conducted. The effect of each factor on the carrier mobility of components is investigated by the piezoresistive coefficient and stress at each direction. The results show that the mobility can be improved by increasing S/D depth, S/D carbon content, gate height, channel width and reducing the gate length and channel length as well.
Finally, The Taguchi quality engineering method is applied. By orthogonal array experiments and analysis of variance, the important factors and the optimal parameter combination are obtained to achieve the enhancement of carrier mobility. As a result, the optimal parameter design mobility gain in Si channel becomes 27.19%, which shows a 34.87% increase of the original mobility gain of 20.16%. Therefore, the performance of the NMOS device has been significantly improved.
[1] K. Rim, J. Welser, J. Hoyt, and J. Gibbons, "Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs", in Electron Devices Meeting, IEDM'95., International, 1995
[2] S. Ito, H. Namba, T. Hirata, K. Ando, S. Koyama, N. Ikezawa, T. Suzuki, T. Saitoh, and T. Horiuchi, "Effect of mechanical stress induced by etch-stop nitride: impact on deep-submicron transistor performance", Microelectronics Reliability, Vol. 42 (2), p. 201-209, 2002
[3] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, and J. Klaus, "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors", in Electron Devices Meeting, IEDM'03 Technical Digest. IEEE International, 2003
[4] K. W. Ang, K. J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y.-C. Yeo, "Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions", in Electron Devices Meeting, IEDM Technical Digest. IEEE International, 2004
[5] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, and K. Kawamura, "A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films", in Electron Devices Meeting, IEDM Technical Digest. IEEE International, 2004
[6] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, and T. Sugii, "MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node", in VLSI Technology, Digest of Technical Papers. 2004 Symposium on, 2004
[7] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, and T. Hoffman, "A 90-nm logic technology featuring strained-silicon", Electron Devices, IEEE Transactions on, Vol. 51 (11), p. 1790-1797, 2004
[8] K. Shin, T. Lauderdale, and T. J. King, "Effect of tensile capping layer on 3-D stress profiles in FinFET channels", in Device Research Conference Digest, DRC'05. 63rd, 2005
[9] Y. C. Yeo and J. Sun, "Finite-element study of strain distribution in transistor with silicon-germanium source and drain regions", Applied Physics Letters, Vol. 86 (2), p. 3103, 2005
[10] S. Orain, V. Fiori, D. Villanueva, A. Dray, and C. Ortolland, "Method for managing the stress due to the strained nitride capping layer in MOS transistors", Electron Devices, IEEE Transactions on, Vol. 54 (4), p. 814-821, 2007
[11] G. H. Wang, E. H. Toh, X. Wang, D. H. L. Seng, S. Tripathy, T. Osipowicz, T. K. Chan, K. M. Hoe, S. Balakumar, and C. H. Tung, "Silicon-Germanium-Tin (SiGeSn) Source and Drain Stressors formed by Sn Implant and Laser Annealing for Strained Silicon-Germanium Channel P-MOSFETs", in Electron Devices Meeting, IEDM 2007. IEEE International, 2007
[12] C. C. Huang, H. Y. Chen, H. K. Chen, and S. Lee, "An investigation of the effect of elastic constants of spacer in n-FETs CESL stressor", Electron Device Letters, IEEE, Vol. 31 (7), p. 638-640, 2010
[13] C. C. Lee, "Strain Engineering of Nanoscale Si P-Type Metal-Oxide-Semiconductor Field-Effect Transistor Devices with SiGe Alloy Integrated with Contact-Etch-Stop Layer Stressors", Journal of nanoscience and nanotechnology, Vol. 12 (7), p. 5402-5406, 2012
[14] C. C. Lee, S. T. Chang, and B. F. Hsieh, "Effect of layout arrangements on strained n-type metal-oxide-semiconductor field-effect transistors with silicon–carbon stressor", Thin Solid Films, Vol. 520 (19), p. 6282-6286, 2012
[15] C. C. Lee, C. H. Liu, R. H. Deng, H. W. Hsu, and K. N. Chiang, "Investigation of consequent process-induced stress for N-type metal oxide semiconductor field effect transistor with a sunken shallow trench isolation pattern", Thin Solid Films, Vol. 557, p. 323-328, 2014
[16] C. C. Lee, C. H. Liu, H. W. Hsu, and M. H. Hung, "Effects of extended poly gate on the performance of strained P-type metal-oxide-semiconductor field-effect transistors with a narrow channel width", Thin Solid Films, Vol. 557, p. 311-315, 2014
[17] C. Wee, S. Maikop, and C. Y. Yu, "Mobility-enhancement technologies", Circuits and Devices Magazine, IEEE, Vol. 21 (3), p. 21-36, 2005
[18] K. Rim, R. Anderson, D. Boyd, F. Cardone, K. Chan, H. Chen, S. Christansen, J. Chu, K. Jenkins, and T. Kanarsky, "Strained Si CMOS (SS CMOS) technology: opportunities and challenges", Solid-State Electronics, Vol. 47 (7), p. 1133-1139, 2003
[19] 陳肇業,“接觸蝕刻截止層厚度應變對奈米等級矽電晶體之電特性與可靠性研究”,明新科技大學校內專題研究計畫成果報告,2012。
[20] C. H. Ge, C. C. Lin, C. H. Ko, C. C. Huang, Y. C. Huang, B. W. Chan, B. C. Perng, C. C. Sheu, P. Y. Tsai, and L. G. Yao, "Process-strained Si (PSS) CMOS technology featuring 3D strain engineering", in Electron Devices Meeting, IEDM'03 Technical Digest. IEEE International, 2003
[21] K. J. Chui, K. W. Ang, N. Balasubramanian, M. F. Li, G. S. Samudra, and Y. C. Yeo, "N-MOSFET with silicon–carbon source/drain for enhancement of carrier transport", Electron Devices, IEEE Transactions on, Vol. 54 (2), p. 249-256, 2007
[22] C. S. Smith, "Piezoresistance effect in germanium and silicon", Physical review, Vol. 94 (1), p. 42, 1954
[23] Y. Kanda, "A graphical representation of the piezoresistance coefficients in silicon", IEEE Transactions on electron devices, Vol. 29 (1), p. 64-70, 1982
[24] W. C. Wang, S. Chang, J. Huang, S. Liao, and C. Lin, "3D Simulations of Width Effect on Performance in NMOSFETs with SiC S/D Stressors and CSEL Linear", IEEE Conference on Electron Devices and Solid-State Circuits, 2007
[25] T. Benabbas, Y. Androussi, and A. Lefebvre, "A finite-element study of strain fields in vertically aligned InAs islands in GaAs", Journal of Applied physics, Vol. 86 (4), p. 1945-1950, 1999
[26] K. Chiang, C. Chang, and C. Peng, "Local-strain effects in Si∕ SiGe∕ Si islands on oxide", Applied Physics Letters, Vol. 87 (19), p. 191901, 2005
[27] M. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus of Silicon?", Microelectromechanical Systems, Journal of, Vol. 19 (2), p. 229-238, 2010
[28] 鄭筱璇,”先進應變工程於奈米電子元件之模擬與實驗驗證”,國立臺灣師範大學機電科技學系碩士論文,2011。
[29] 林宏年、呂嘉裕、林鴻志、黃調元,”局部與全面形變矽通道
(strained Si channel)互補式金氧半(CMOS)之材料、製程與元件
特性分析,奈米通訊,第十二卷第一、二期,,2005。
[30] 鄭晃忠、劉傳璽,新世代積體電路製程技術,台灣電子材料
與元件協會,東華書局,2011。
[31] 劉傳璽、陳進來,半導體元件物理與製程 理論與實務,五南
圖書出版公司,2014。
[32] 李輝煌,田口方法 品質設計的原理與實務,高立圖書有限公
司,2013。
[33] 李輝煌,ANSYS工程分析基礎與觀念,高立圖書有限公司,
2005。