簡易檢索 / 詳目顯示

研究生: 唐德愛
Tang, Te-Ai
論文名稱: AI醫療器材軟體商品化困境研究
Research on the commercialization dilemma of AI Software as Medical Device
指導教授: 陳芃婷
Cheng, Peng-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 93
中文關鍵詞: 人工智慧醫療器材軟體商品化困境研究決策實驗室分析法網路關係結構
外文關鍵詞: Artificial Intelligence, Software as Medical Device commercialization, IEA-NRM model, Analytic Network Process, VIKOR
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT I 摘要 II Acknowledgements III Content IV Lists of Tables VII Lists of Figures IX 1. Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Purpose 3 2. Literature Review 4 2.1. Artificial intelligence and medical device 4 2.2. AI SaMD and the challenges it faced 5 2.3. Innovation-resistance theory 10 2.4. The barriers of AI SaMD commercialization 12 2.4.1. Lack of valid data training 13 2.4.2. Lack of organization relationship management 14 2.4.3. Lack of developing resource 15 2.4.4. Difficulty of regulatory certifying 16 2.4.5. Difficulty of constructing business model 17 3. Methodology 20 3.1. Study design 20 3.1.1. Research flow 20 3.1.2. Stakeholder analysis 23 3.1.3. Interview outline 23 3.1.4. Questionnaire design 25 3.2. Methodologies 27 3.2.1. Content analysis 28 3.2.2. Importance-external assistance analysis 31 3.2.3. Decision-making trial and evaluation laboratory (DEMATEL) 32 3.2.4. Analytical network process 37 3.2.5. VlseKriterijumska Optimizacija I Komopromisno Resenje (VIKOR) 39 4. Results 42 4.1. Content analysis 43 4.2. Data collection 49 4.3. Importance-external assistance analyses 50 4.3.1. General aspects 50 4.3.2. Lack of valid data training 51 4.3.3. Lack of organization relationship management 52 4.3.4. Lack of developing resource 54 4.3.5. Difficulty of regulatory certifying 55 4.3.6. Difficulty of constructing business model 56 4.4. DEMATEL 58 4.4.1. General aspects 58 4.4.2. Lack of valid data training 60 4.4.3. Lack of organization relationship management 61 4.4.4. Lack of developing resource 62 4.4.5. Difficulty of regulatory certifying 64 4.4.6. Difficulty of constructing business model 65 4.5. Strategic pathway 67 4.5.1. General aspects 67 4.5.2. Lack of valid data training 68 4.5.3. Lack of organization relationship management 70 4.5.4. Lack of developing resource 71 4.5.5. Difficulty of regulatory certifying 72 4.5.6. Difficulty of constructing business model 73 4.6. Analytical network process 74 4.7. Vlse Kriterijumska Optimizacija I Kompromisno Resenje 76 5. Discussion and Conclusion 79 5.1. Content analysis 79 5.2. IEA-NRM models 80 5.3. Analytical network process 84 5.4. Vlse Kriterijumska Optimizacija I Kompromisno Resenje 84 5.5. Theoretical implication 85 5.6. Managerial implication 86 5.7. Limitation and future research 88 Reference 89

    Aitken, M., de St Jorre, J., Pagliari, C., Jepson, R., & Cunningham-Burley, S. (2016). Public responses to the sharing and linkage of health data for research purposes: a systematic review and thematic synthesis of qualitative studies. BMC medical ethics, 17(1), 1-24.
    André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., . . . Yang, H. (2018). Consumer choice and autonomy in the age of artificial intelligence and big data. Customer needs and solutions, 5(1), 28-37.
    Arora, A. (2020). Conceptualising artificial intelligence as a digital healthcare innovation: an introductory review. Medical Devices (Auckland, NZ), 13, 223.
    Berelson, B. (1952). Content analysis in communication research.
    Carter, S. M., Rogers, W., Win, K. T., Frazer, H., Richards, B., & Houssami, N. (2020). The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast, 49, 25-32.
    Chang, V., Abdel-Basset, M., & Ramachandran, M. (2019). Towards a reuse strategic decision pattern framework–from theories to practices. Information Systems Frontiers, 21(1), 27-44.
    Chen, P.-T. (2018). Medical big data applications: Intertwined effects and effective resource allocation strategies identified through IRA-NRM analysis. Technological Forecasting and Social Change, 130, 150-164.
    Chyu, C.-C., & Fang, Y.-C. (2014). A hybrid fuzzy analytic network process approach to the new product development selection problem. Mathematical Problems in Engineering, 2014.
    Clarke, R. (2019). Principles and business processes for responsible AI. Computer Law & Security Review, 35(4), 410-422.
    Cohen, I. G., & Mello, M. M. (2019). Big data, big tech, and protecting patient privacy. Jama, 322(12), 1141-1142.
    Culnane, C., Rubinstein, B. I., & Teague, V. (2017). Health data in an open world. arXiv preprint arXiv:1712.05627.
    Currie, G., Hawk, K. E., Rohren, E., Vial, A., & Klein, R. (2019). Machine learning and deep learning in medical imaging: intelligent imaging. Journal of medical imaging and radiation sciences, 50(4), 477-487.
    Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC medical informatics and decision making, 20(1), 1-19.
    Fenech, M., Strukelj, N., & Buston, O. (2018). Ethical, social, and political challenges of artificial intelligence in health. London: Wellcome Trust Future Advocacy, 12.
    Gore, J. C. (2020). Artificial intelligence in medical imaging. In (Vol. 68, pp. A1-A4): Elsevier.
    Group, S.-I., & Community, F. R. (2018). Artificial intelligence and medical imaging 2018: French Radiology Community white paper. Diagnostic and Interventional Imaging, 99(11), 727-742.
    Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial intelligence for clinical trial design. Trends in pharmacological sciences, 40(8), 577-591.
    Harrington, S. G., & Johnson, M. K. (2019). The FDA and artificial intelligence in radiology: defining new boundaries. Journal of the American College of Radiology, 16(5), 743-744.
    Harvey, H. B., & Gowda, V. (2020). How the FDA regulates AI. Academic Radiology, 27(1), 58-61.
    Heidenreich, S., & Kraemer, T. (2015). Passive innovation resistance: The curse of innovation? Investigating consequences for innovative consumer behavior. Journal of Economic Psychology, 51, 134-151.
    Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120.
    Hsu, C.-W., Kuo, T.-C., Chen, S.-H., & Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of Cleaner Production, 56, 164–172.
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
    Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC medicine, 17(1), 1-9.
    Kohli, M., & Geis, R. (2018). Ethics, artificial intelligence, and radiology. Journal of the American College of Radiology, 15(9), 1317-1319.
    Lee, W.-S., Huang, A. Y., Chang, Y.-Y., & Cheng, C.-M. (2011). Analysis of decision making factors for equity investment by DEMATEL and Analytic Network Process. Expert systems with Applications, 38(7), 8375-8383.
    Luxton, D. D. (2014). Recommendations for the ethical use and design of artificial intelligent care providers. Artificial intelligence in medicine, 62(1), 1-10.
    Min, J.-W., Vonortas, N. S., & Kim, Y. (2019). Commercialization of transferred public technologies. Technological Forecasting and Social Change, 138, 10-20.
    Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial intelligence transforms the future of health care. The American journal of medicine, 132(7), 795-801.
    Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of civil engineering, Belgrade, 2(1), 5-21.
    Park, S. H., & Han, K. (2018). Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology, 286(3), 800-809.
    Pesapane, F., Volonté, C., Codari, M., & Sardanelli, F. (2018). Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into imaging, 9(5), 745-753.
    Prevedello, L. M., Halabi, S. S., Shih, G., Wu, C. C., Kohli, M. D., Chokshi, F. H., . . . Flanders, A. E. (2019). Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiology. Artificial intelligence, 1(1).
    Saaty, T. L. (2004). Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. Journal of Systems science and Systems engineering, 13(2), 129-157.
    Saaty, T. L. (2006). Rank from comparisons and from ratings in the analytic hierarchy/network processes. European Journal of Operational Research, 168(2), 557-570.
    Saaty, T. L. (2007). Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling, 46(7-8), 860-891.
    Saaty, T. L., & Begicevic, N. (2010). The scope of human values and human activities in decision making. Applied Soft Computing, 10(4), 963-974.
    Saba, L., Biswas, M., Kuppili, V., Godia, E. C., Suri, H. S., Edla, D. R., . . . Mavrogeni, S. (2019). The present and future of deep learning in radiology. European journal of radiology, 114, 14-24.
    Savadjiev, P., Chong, J., Dohan, A., Vakalopoulou, M., Reinhold, C., Paragios, N., & Gallix, B. (2019). Demystification of AI-driven medical image interpretation: past, present and future. European radiology, 29(3), 1616-1624.
    Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harv. JL & Tech., 29, 353.
    Sestino, A., Prete, M. I., Piper, L., & Guido, G. (2020). Internet of Things and Big Data as enablers for business digitalization strategies. Technovation, 98, 102173.
    Shieh, J.-I., & Wu, H.-H. (2016). Measures of consistency for DEMATEL method. Communications in Statistics-Simulation and Computation, 45(3), 781-790.
    Shieh, J.-I., Wu, H.-H., & Huang, K.-K. (2010). A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282.
    Si, S.-L., You, X.-Y., Liu, H.-C., & Zhang, P. (2018). DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. Mathematical Problems in Engineering, 2018.
    Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., & Chiang, M. F. (2020). Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Translational Vision Science & Technology, 9(2), 45-45.
    Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47, 101324.
    Svenstrup, D., Jørgensen, H. L., & Winther, O. (2015). Rare disease diagnosis: a review of web search, social media and large-scale data-mining approaches. Rare Diseases, 3(1), e1083145.
    Toh, T. S., Dondelinger, F., & Wang, D. (2019). Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine, 47, 607-615.
    Tzeng, G.-H., Chiang, C.-H., & Li, C.-W. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert systems with Applications, 32(4), 1028-1044.
    Vespestad, M. K., & Clancy, A. (2021). Exploring the use of content analysis methodology in consumer research. Journal of Retailing and Consumer Services, 59, 102427.
    Weber, R. P. (1990). Basic content analysis Sage university papers series. Quantitative applications in the social sciences Retrieved from WorldCat database Retrieved from http://catdir. loc. gov/catdir/enhancements/fy0655/90061019-d. html.
    Xing, F., Peng, G., Zhang, B., Li, S., & Liang, X. (2021). Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China. Technological Forecasting and Social Change, 166, 120609.
    Yang, Y.-P. O., Shieh, H.-M., Leu, J.-D., & Tzeng, G.-H. (2008). A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International journal of operations research, 5(3), 160-168.
    Zheng, Y., He, Y., Xu, Z., & Pedrycz, W. (2018). Assessment for hierarchical medical policy proposals using hesitant fuzzy linguistic analytic network process. Knowledge-Based Systems, 161, 254-267.

    無法下載圖示 校內:2027-09-28公開
    校外:2027-09-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE