簡易檢索 / 詳目顯示

研究生: 周椲迪
Chou, Wei-Di
論文名稱: 可調式膨脹星形蜂巢狀結構之波傳分析
Analysis of Wave Propagation in Tunable Auxetic Star-shaped Honeycombs
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 星形蜂巢狀結構膨脹材料準直負電容電路
外文關鍵詞: star-shaped honeycombs, auxetics, collimation, negative capacitance circuit
相關次數: 點閱:75下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 星形蜂巢狀結構是一種具有負泊松比特性的週期性多孔結構,該類型的負泊松比多孔結構又統稱為膨脹材料,其組成皆為彈性材料的週期排列,所分析對象為彈性波,包含縱波、橫波及其耦合現象等,學者將此類型結構視為聲子晶體的一種,進而透過有限元素分析與布洛赫定理分析此類型週期結構的波傳行為,發現在某些頻段下的彈性波在此週期結構中無法傳遞,產生彈性波的能隙現象。本文將星形蜂巢狀結構其內部空隙部分填入基材,分析填入基材對其整體結構機械性質的變化,針對填入不同基材與不同填入區域兩部份,並分別討論其泊松比、楊氏模數及剪力模數變化關係。進而對填入基材的星形蜂巢狀結構分析其波傳現象,在特定的頻寬下外圍填滿的星形蜂巢狀結構會具有準直的現象。
    為了設計可主動式控制的聲子晶體元件,在星形蜂巢狀結構相互連接梁的兩側加上壓電材料,並利用壓電材料外加經過設計的負電容電路會使壓電材料的剛性改變之特性,藉由調變外加負電容電路中的可變電阻,達到改變壓電材料的楊氏模數,調變聲子晶體完全能隙的作用頻率範圍,可用於設計聲波開關或濾波器等,最後透過有限元素軟體COMSOL分析聲子能帶及進行全波模擬,證明可調式膨脹聲子晶體元件的可行性。

    The development of star-shaped honeycombs filled with matrix in the void area is presented. Divide into two parts, the different matrix be filled and the different area be filled. The effects of the matrix on the effective constants such as Poisson’s ratio, Young’s modulus, and shear modulus are investigated and discussed. Then the wave propagation of star-shaped honeycombs filled with matrix are investigated, and the outside-filled star-shaped honeycombs exhibit collimate phenomenon in certain frequency. In order to design phononic crystals device, we proposed a tunable piezoelectric materials which is connected to a separate negative capacitance circuit. Making use of the characteristic which change the effective modulus by tuning the variable resistor in the circuit, we introduce piezoelectric materials into star-shaped honeycombs. The phononic bandgap depends on the tunable effective modulus, giving rise to prospective applications such as elastic/acoustic filters and sonic switch. The performance obtained by COMSOL Multiphysics Finite Element simulations confirmed the feasibility of the sonic devices proposed.

    中文摘要 I 英文摘要 II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 基本的聲子晶體 2 1-2-2 可調式聲子晶體 3 1-2-3 多孔材料概述 4 1-2-4 負泊松比材料 5 1-2-5 含基材之膨脹材料 6 1-2-6壓電材料負電容效應 7 1-3 本文架構 8 第二章 數值方法 13 2-1前言 13 2-2固態物理學基本定義 13 2-2-1倒晶格空間 13 2-2-2布里淵區(Brillouin Zones) 15 2-2-3布洛赫定理(Bloch theorem) 16 2-3 卡氏第二定理之分析 17 2-4 有限元素法 21 第三章 星形蜂巢狀結構 30 3-1 前言 30 3-2 機械性質之分析 30 3-2-1 支架結構分析 30 3-2-2 填入不同基材之分析 31 3-2-3 基材填入不同區域之分析 33 3-3波傳行為之分析 35 3-3-1 支架結構之分析 35 3-3-1 填入基材之分析 36 第四章 壓電材料之負電容電路 53 4-1前言 53 4-2壓電材料之基礎 53 4-2-1壓電方程式 53 4-1-2負電容效應 55 4-3壓電材料應用於星形蜂巢狀結構之分析 56 4-4壓電材料應用於星形蜂巢狀結構之設計 57 第五章 綜合結論與未來展望 71 5-1 綜合結論 71 5-2 未來展望 72 參考文獻 74

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. Vol. 58, No. 20, pp. 2059-2062 (1987)
    [2] S. John, “Strong localization of photons in certain disordered dielectric super-lattices,” Phys. Rev. Lett. Vol. 58, No. 23, pp. 2486-2489 (1987)
    [3] L. Brillouin, “Wave propagation in periodic structures,” 2nd ed. Dover, New York (1953)
    [4] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms),” Archiv der Elektrischen Ubertragung, Vol.7,261(1953)
    [5] M. A. Heckl, “Investigations on the vibrations of grillage and other simple beam structure,” Journal of the Acoustical Society of America, Vol.36, 1335(1964)
    [6] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. Vol. 71, No. 13, pp. 2022-2025 (1993)
    [7] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B. Vol. 49, No. 4, pp. 2313-2322 (1994)
    [8] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. Vol. 64, No. 9, pp. 1085-1087 (1994)
    [9] M. S. Kushwaha, “Classical band structure of periodic elastic composites,” Int. J. Mod. Phys. B Vol. 10, No. 9, pp. 977-1094 (1996)
    [10] A.S. Phani, J. Woodhouse, N.A. Fleck “Wave propagation in two-dimensional periodic lattices,” Journal of the Acoustical Society of America, 119 (4), pp. 1995–2005 (2006)
    [11] M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Optics Communications,Vol.80,pp.199-204 (1991)
    [12] M. Plihal, A. A. Maradudin, “Photonic band structures of Two-dimensional system:The triangular lattice,” Physical Review B,Vol.44,pp.8565-8571 (1991)
    [13] X. Wang, X. G. Zhang, Q. Yu, B.N. Harmon, “Multiple-scattering theory for electromagnetic wave,” Physical Review B,Vol.47,pp.4161-4167 (1993)
    [14] P. M. Bell, J. B. Pendry, M.Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Computing Physics Communications,Vol.85,pp.306-322 (1995)
    [15] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.(Norwood,MA:Artech House,1995)
    [16] M. Wilm, S. Ballandras, V. Laude and T. Pastureaud, “A full 3D plane wave expansion model for 1-3 piezoelectric composite structures,” The Journal of the Acoustical Society of America, Vol.112, 943 (2002)
    [17] M. Wilm, A. Khelif, S. Ballandras and V. Laude, “Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,” Physical Review E, Vol.67, 065602 (2003)
    [18] V. Laude, M. Wilm, S. Benchabane and A. Khelif, “Full band gap for surface acoustic waves in a piezoelectric phononic crystal,” Physical Review E, Vol.71, 036607 (2005)
    [19] Z. Hou, F. Wu and Y. Liu, “Phononic crystals containing piezoelectric material,” Solid State Communications, Vol.130, 745 (2004)
    [20] J. J. Chen, K. W. Zhang, J. Gao and J. C Cheng, “Stopbands for lower-order Lamb waves in one-dimensional composite thin plates,” Physical Review B, Vol.73, 094307 (2006)
    [21] X. Y. Zou, Q. Chen, B. Liang and J. C. Cheng, “Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures,” Smart Materials and Structures, Vol.17, 015008 (2008)
    [22] T. Chen, M. Ruzzene and A. Baz, “Control of wave propagation in composite rods using shape memory inserts: theory and experiments,” Journal of Vibration and Control, Vol.6, 1065 (2000)
    [23] M. Ruzzene and A. Baz, “Control of wave propagation in periodic composite rods using shape memory inserts,” Journal of Vibration and Acoustics, Vol.122, 151 (2000)
    [24] M. Ruzzene and A. Baz, “Attenuation and localization of wave propagation in periodic rods using shape memory inserts,” Smart Materials and Structures, Vol.9, 805 (2000)
    [25] H. Tang, C. R. Luo, and X. P. Zhao, “Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves,” Journal of Physics D: Applied Physics, Vol.37, 2331 (2004)
    [26] J. Y. Yeh, “Control analysis of the tunable Phononic crystal with electrorheological material,” Physica B, Vol.400, 137 (2007)
    [27] Wen-Pei Yang, Lien-Wen Chen, “The tunable acoustic band gaps of the two-dimensional phononic crystals with dielectric elastomer cylindrical actuator”, Smart Materials and Structures, Vol. 17, No. 1, pp. 015011 (2008)
    [28] Gibson LJ, Ashby MF, Schajer GS, Roberson CI, “The mechanics of two-dimensional cellular materials,” Proc R Soc Lond A 382 :25–42 (1982)
    [29] S. Gonella, Albert C, Wing Kam Liu, “Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting,” Journal of the Mechanics and Physics of Solid, 57 :621-633 (2009)
    [30] B.K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, “Negative Poisson's ratio behavior induced by an elastic instability,”Advanced Materials 21 :1–6 (2009)
    [31] B.K. Bertoldi, Shan S, et al. Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 4935–4942 (2014).
    [32] Love AEH “A treatise on the mathematical theory of elasticity,” 4th edn. Cambridge University Press, Cambridge (1927)
    [33] Baughman R H, Schaklette J M, Zakhidov A A, et al. “Negative Poisson’s ratios as a common feature of cubic metals,” Nature, 392: 362–365 (1998)
    [34] Almgren RF, “An isotropic three-dimensional structure with Poisson’s ratio = −1,” J Elast 15 (4):427–430 (1985)
    [35] Lakes R S. “Foam structures with a negative Poisson’s ratio,” Science, 235: 1038–1040 (1987)
    [36] Evans KE, “Auxetic polymers: a new range of materials,” Endeavour 15 (4) :170–174 (1991)
    [37] Prall D, Lakes R, “Properties of chiral honeycomb with a Poisson’s ratio of -1,” International Journal of Mechanical Sciences, 39(3) :305-314 (1997)
    [38] P. S. Theocaris, G. E. Stavroulakis, “Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach,” Arch. Appl. Mech,68 :281 (1998)
    [39] Grima JN, Gatt R, Alderson A, Evans KE, “On the potential of connected stars as auxetic systems,” Mol. Simul., 31: 925-935 (2005)
    [40] Ruzzene M, Scarpa F, “Wave beaming effects in two-dimensional cellular structure,” Smart Materials and Structures, 12(3) :363-372 (2003)
    [41] Gonella S, Ruzzene M, “Analysis of in-plane wave propagation in hexagonal and re-entrant lattices” Journal of Sound and Vibration,312 (1–2), 125–139 (2008)
    [42] A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa, “Phononic properties of hexagonal chiral lattices,” Wave Motion 46 (7) 435–450 (2009)
    [43] Meng J, Deng Z, Zhang K, Xu X, Wen F, “Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio,” Smart Materials and Structures, 2015 vol. 24, no. 9, 095011 (2015)
    [44] Ruzzene M, Mazzarella L, Tsopelas P, Scarpa F,“wave propagation in sandwich plates with periodic auxetic core,” Journal of Intelligent Material Systems and Structures, vol. 13 no. 9 587-597 (2002)
    [45] Murray G, Gandhi F, Hayden E, “Polymer-filled honeycombs to achieve a structural material with appreciable damping,” Journal of Intelligent Material Systems and Structures 23(6) 703–718 (2012)
    [46] Murray G, Gandhi F, “Auxetic honeycombs with lossy polymeric infills for high damping structural materials,” Journal of Intelligent Material Systems and Structures 24(9) 1090–1104 (2013)
    [47] T. Strek, H. Jopek, B. T. Maruszewski, and M. Nienartowicz, “Dynamic response of sandwich panels with auxetic cores,” Phys. Status Solidi B 251, 354–366 (2014).
    [48] X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “wave propagation characterization and design of two dimensional elastic chiral metacomposite,” J. Sound Vib. 330, 2536 (2011)
    [49] Bacigalupo A,Bellis M L D, “Auxetic anti-tetrachiral materials: Equivalent elastic properties and frequency band-gaps,” Compos, Struct. 131, 530-544 (2015)
    [50] Hagood NW, von Flotow A, “Damping of structural vibrations with piezoelectric materials and passive electrical networks,” J Sound Vib 146:243–268 (1991)
    [51] Munehiro Date, Masayuki Kutani, Shigeru Sakai, “Electrically controlled elasticity utilizing piezoelectric coupling,” Journal of Applied Physics 87, 863 (2000)
    [52] Yoshiro Tajiysu,et al. “Elasticity Control of Piezoelectric Lead Zirconate Titanate (PZT) Materials Using Negative-Capacitance Circuits,” Journal of Applied Physics Vol. 44, No. 9B, pp. 7019–7023 (2005)
    [53] Yoshiro Tajiysu,et al. “Basic Study of Application for Elasticity Control of Piezoelectric Lead Zirconate Titanate Materials using Negative-Capacitance Circuits to Sound Shielding Technology,” Journal of Applied Physics Vol. 45, No. 9B, pp. 7422–7425 (2006)
    [54] Yoshiro Tajiysu,et al. “Basic Study of Elasticity Control of Soft and Hard Piezoelectric Materials Using Different Types of Negative-Capacitance Circuits,” Journal of Applied Physics Vol. 46, No. 10B, pp. 7053–7057 (2007)
    [55] B. S. Beck, K. A. Cunefare, and M. Collet, “The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system,” Smart Mater. Struct. 22, 065009 (2013).
    [56] Y. Y. Chen, G. L. Huang, C. T. Sun, “Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting,” Journal of Vibration and Acoustics, vol.136 061008 (2014)
    [57] P. Celli, S. Gonella, “Cellular phononic crystals with piezoelectric shunts for tunable directivity,” Proc. of SPIE, vol.9438 94380 (2015)
    [58] P. Celli, S. Gonella, “Tunable directivity in metamaterials with reconfigurable cell symmetry,” Applied Physics Letter, 106 091905 (2015)
    [59] A. K. Noor, M. S. Anderson, W. H. Greene, “Continuum models for beam and plate like lattice structure” AIAA Journal 16, 1219-1228 (1978)
    [60] Yun Hao, Deng Zi Chen, Zhu Zhi Wei, “Bandgap properties of periodic 4-point star-shaped honeycomb materials with negative Poisson’s ratio,” Applied mathematics and mechanics Vol.36,No.8 (2015)
    [61] R. Brighenti, “Smart behavior of layered plates through the use of auxetic materials,” Thin-walled structures 84:432-442 (2014)
    [62] Teik Cheng Lim, “Auxetic Materials and Structures,” engineering materials (2015)
    [63] 劉培生,多孔材料引論 清華大學出版,2004

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE