| 研究生: |
林敬浤 Lin, Jing-Hong |
|---|---|
| 論文名稱: |
傾斜矩形密閉空間內之自然對流的實驗和數值研究 Numerical and Experimental Study of Inclined Rectangular Enclosure in Natural Convection |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 逆算法 、自然對流 、密閉矩形 |
| 外文關鍵詞: | inverse methods, natural convection, enclosed rectangular |
| 相關次數: | 點閱:123 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文擬以數值逆算法及商業計算流體力學軟體配合實驗量測溫度來預測密閉矩形空間在不同傾斜角的熱傳特性。本研究藉由量測標準試件的內部溫度後,利用逆算法預測標準試件之表面溫度及平均紐賽數(Nusselt number)。本文逆算法之優點在於進行逆算法前,不需要任何疊代過程與初始猜值。為了使本研究更加完整,本文亦將使用計算流體力學軟體模擬本實驗架構,模擬密閉空間內之熱場及流場的分佈情形。結果顯示,密閉矩形內的平均紐賽數隨著空氣間距增加而增加,而在相同空氣間距下,傾斜角的改變對於兩板間溫差改變不大。欲驗證本文逆算法結果之正確性與可靠性,將與計算流體力學商業軟體之數值結果和經驗公式相比較,結果顯示,本文之逆算法具有高度準確性。
The present study applies the numerical and inverse methods in conjunction with the experimental temperature data to determine the heat transfer and fluid flow characteristics in an inclined enclosure rectangular for natural convection. In this study, the present inverse scheme in conjunction with the experimental temperature data is applied to determine the temperature and average Nusselt number. The advantages of this inverse algorithm do not need any iterative process and the initial guess. In addition, this article will be applied to computational fluid dynamics commercial software with experimental temperature measurement to simulation the temperature and the flow field distribution. The results show that the average Nusselt number increased with the increase of the air space, the temperature do not significant change at the same air space in various kinds of angle. In order to verify the accuracy and reliability of the present method, the present results are compared to the numerical results and the correlation equations. The results show that the present results are in good agreement.
[1] Y. Mori, Y. Uchida, Forced convective heat transfer between horizontal flat plates, Int. J. Heat Mass Transfer 9, (1966) 803-817.
[2] M. Akiyama, G.J. Hwang, K.C. Cheng, Experiments on the onset of longitudinal vortices in laminar forced convection between horizontal plates. J. Heat Transfer 93, (1971) 335-341.
[3] D. M. Kim, R. Viskanta, Study of the effect of wall conductance on natural convection in differentially oriented square cavities, J. Fluid Mech. 144, (1984) 153-176.
[4] A. Dalal, K. Das, Natural convection in a rectangular cavity heated form below and uniformly cooled form the top and both sides, Num. Heat Trans. Part A. 49, (2006) 301-322.
[5] D. Mishra, K. Muralidhar, P. Munshi, Experimental study of Rayleigh-Bénard convection at intermediate Rayleigh numbers using interferometric tomopraphy, Fluid Dynamics Research. 25, (1999) 231-255.
[6] K.R. Randall, J.W. Mitchell, M.M. El-Wakil, Natural convection heat transfer characteristics of flat plate enclosure, J. Heat Transfer. 101, (1979) 120-125.
[7] M. A. R. Sharif, T. R. Mohammad, Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the side wall, Int. Thermal. Sci. 41, (2005) 865-878.
[8] B.A. Meyer, J. W. Mitchell, M.M. El-Wakil, Natural convection heat transfer in moderate aspect ratio enclosure, J. Heat Transfer. 101, (1979) 655-659.
[9] W. Koutsoheras, W.W.S. Charters, Natural convection phenomena in inclined cells with finite side wall-A numerical solution, Solar Energy. 19, (1977) 433-438.
[10] B.A. Meyer, J. W. Mitchell, M.M. El-Wakil, The effect of thermal wall properties on natural convection on inclined rectangular cells , J. Heat Transfer. 104, (1982) 111-117.
[11] K.G.T. Hollands, T.E. Unny, G.D. Raithby, L. Konicek, Free Convective Heat Transfer Across Inclined Air Layers , J. Heat Transfer. 98C, (1976) 189-193.
[12] S.M. EISherbiny, G.D. Raithby, K.G.T. Hollands, Heat Transfer by Natural Convection Across Vertical and Inclined Air Layers , J. Heat Transfer. 104C, (1982) 96-102.
[13] M. Corcione, Effect of thermal boundary conductions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above , Int. Thermal Sci. 3, (2003) 199-208.
[14] G. De Vahl Davis, Natural convection of air in a square cavity :A bench mark numerical solution , International Journal for Numerical Methods in Fluids. 3, (1983) 249-264.
[15] H. Mlaouah, T. Tsuji, Y. Nagano, A Study of Non-Boussinesq Effect on Transition of Thermally Induced Flow in a Square Cavity, Int. J. Heat Fluid Flow. 18, (1997) 100-106.
[16] S. chantasiriwan, Inverse heat conduction problem of determining time-dependent heat transfer coefficient, Int. J. Heat Transfer. 42, (2000) 4275-4285.
[17] T.J. Martin, G.S. Dulikravich, Inverse determination of steady heat convection coefficient distributions , J. Heat Transfer. 120, (1998) 328-334.
[18] P.L. Masson, T. Loulou, E. Artioukhine, Estimation of a 2-D convection heat transfer coefficient during a test: comparison between two methods and experimental validation, Inverse Problem in Science and Engineering. 12, (2004) 595-617.
[19] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problem, Int. J. Heat Mass Transfer. 44, (2001) 1455-1463.
[20] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of two-side boundary conduction for two-dimensional inverse heat conduction problem, Int. J. Heat Mass Transfer. 45, (2002) 15-23.
[21] H.T. Chen and X.Y. Wu, Estimation of heat coefficient in two-dimensional inverse heat conduction problem, Numerical Heat Transfer. 50, (2006) 375-394.
[22] H.T. Chen and X.Y. Wu, Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme, Int. J. Numerical Methods in Engineering. 73, (2008) 107-122.
[23] H.T. Chen and J.Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problem, Int. J. Heat Mass Transfer. 34, (1991) 1301-1308.
[24] H.T. Chen and J.Y. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer. 36, (1993) 2891-2898.
[25] H.T. Chen and J.Y. Lin, Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer. 37, (1994) 153-164.
[26] H.T. Chen and S.M. Chang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer. 33, (1990) 621-628.
[27] H.T. Chen, S.Y. Lin, L.C. Fang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer. 33, (1990)