簡易檢索 / 詳目顯示

研究生: 林敬浤
Lin, Jing-Hong
論文名稱: 傾斜矩形密閉空間內之自然對流的實驗和數值研究
Numerical and Experimental Study of Inclined Rectangular Enclosure in Natural Convection
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 逆算法自然對流密閉矩形
外文關鍵詞: inverse methods, natural convection, enclosed rectangular
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文擬以數值逆算法及商業計算流體力學軟體配合實驗量測溫度來預測密閉矩形空間在不同傾斜角的熱傳特性。本研究藉由量測標準試件的內部溫度後,利用逆算法預測標準試件之表面溫度及平均紐賽數(Nusselt number)。本文逆算法之優點在於進行逆算法前,不需要任何疊代過程與初始猜值。為了使本研究更加完整,本文亦將使用計算流體力學軟體模擬本實驗架構,模擬密閉空間內之熱場及流場的分佈情形。結果顯示,密閉矩形內的平均紐賽數隨著空氣間距增加而增加,而在相同空氣間距下,傾斜角的改變對於兩板間溫差改變不大。欲驗證本文逆算法結果之正確性與可靠性,將與計算流體力學商業軟體之數值結果和經驗公式相比較,結果顯示,本文之逆算法具有高度準確性。

    The present study applies the numerical and inverse methods in conjunction with the experimental temperature data to determine the heat transfer and fluid flow characteristics in an inclined enclosure rectangular for natural convection. In this study, the present inverse scheme in conjunction with the experimental temperature data is applied to determine the temperature and average Nusselt number. The advantages of this inverse algorithm do not need any iterative process and the initial guess. In addition, this article will be applied to computational fluid dynamics commercial software with experimental temperature measurement to simulation the temperature and the flow field distribution. The results show that the average Nusselt number increased with the increase of the air space, the temperature do not significant change at the same air space in various kinds of angle. In order to verify the accuracy and reliability of the present method, the present results are compared to the numerical results and the correlation equations. The results show that the present results are in good agreement.

    目錄 摘要 I ABSTRACT II 致謝 III 符號說明 XI 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 6 1-4 研究重點與架構 7 第二章 理論分析 10 2-1 數學模式 10 2-2 數值分析 10 第三章 實驗操作與數據分析 14 3-1 簡介 14 3-2 實驗設備 14 3-3 實驗步驟 17 第四章 數值模擬分析 22 4-1 簡介 22 4-2 統御方程式 22 第五章 實驗結果與討論 63 5-1 簡介 63 5-2 數值分析與結果討論 63 第六章 綜合結論與未來發展 70 6-1 綜合結論 70 6-2 未來發展與建議 70 參考文獻 72 表目錄 表 4-1 空氣性質表 26 表 4-2 對於 S=20mm之不同流動模式的紐賽數比較 34 表 4-3 對於S=6mm之網格數對紐賽數之影響 35 表 4-4 對於S=8mm之網格數對紐賽數之影響 35 表 4-5 對於S=10mm之網格數對紐賽數之影響 35 表 4-6 對於S=12mm之網格數對紐賽數之影響 36 表 4-7 對於S=16mm之網格數對紐賽數之影響 36 表 4-8 對於S=20mm之網格數對紐賽數之影響 36 表 4-9 傾斜0o及不同S間距之溫度量測值與本文模擬和紐賽數比較 61 表 4-10 傾斜30o及不同S間距之溫度量測值與本文模擬和紐賽數比較 61 表 4-11 傾斜60o及不同S間距之溫度量測值與本文模擬和紐賽數比較 62 表 4-12 傾斜90o及不同S間距之溫度量測值與本文模擬和紐賽數比較 62 表 5-1 於自然對流下,水平平板之紐賽數比較 66 表 5-2 於自然對流下,傾斜30o平板之紐賽數比較 66 表 5-3 於自然對流下,傾斜60o平板之紐賽數比較 67 表 5-4 於自然對流下,傾斜90o平板之紐賽數比較 67 圖目錄 圖 3-1 整體實驗架 19 圖 3-2 實驗本體示意圖 20 圖 3-3 實驗本體剖面圖 20 圖 3-4 熔接熱電偶計 21 圖 3-5 資料擷取系統 21 圖 4-1 物理模型圖 32 圖 4-2 網格示意圖 32 圖 4-3 商業計算流體力學軟體分析之架構流程圖 33 圖 4-4 對於 S=20mm之不同流動模式的空氣溫度分佈圖: 34 圖 4-5 對於傾斜0o之平板間的空氣溫度分佈圖: (a) S=6mm;(b) S=8mm 37 圖 4-6 對於傾斜0o之平板間的空氣溫度分佈圖: (c) -=10mm;(d) S=12mm 38 圖 4-7 對於傾斜0o之平板間的空氣溫度分佈圖: (e) S=16mm;(f) S=20mm 39 圖 4-8 對於傾斜30o之平板間的空氣溫度分佈圖: (a) S=6mm;(b) S=8mm 40 圖 4-9 對於傾斜30o之平板間的空氣溫度分佈圖: (c) S=10mm;(d) S=12mm 41 圖 4-10 對於傾斜30o之平板間的空氣溫度分佈圖: (e) S=16mm;(f) S=20mm 42 圖 4-11 對於傾斜60o之平板間的空氣溫度分佈圖: (a) S=6mm;(b) S=8mm 43 圖 4-12 對於傾斜60o之平板間的空氣溫度分佈圖: (c) S=10mm;(d) S=12mm 44 圖 4-13 對於傾斜60o之平板間的空氣溫度分佈圖: (e) S=16mm;(f) S=20mm 45 圖 4-14 對於傾斜60o之平板間的空氣溫度分佈圖: (a) S=6mm;(b) S=8mm 46 圖 4-15 對於傾斜60o之平板間的空氣溫度分佈圖: (c) S=10mm;(d) S=12mm 47 圖 4-16 對於傾斜60o之平板間的空氣溫度分佈圖: (e) S=16mm;(f) S=20mm 48 圖 4-17 對於傾斜0o之平板間的空氣流場分佈圖: (a) S=6mm;(b) S=8mm 49 圖 4-18 對於傾斜0o之平板間的空氣流場分佈圖: (c) S=10mm;(d) S=12mm 50 圖 4-19 對於傾斜0o之平板間的空氣流場分佈圖: (e) S=16mm;(f) S=20mm 51 圖 4-20 對於傾斜30o之平板間的空氣流場分佈圖: (a) S=6mm;(b) S=8mm 52 圖 4-21 對於傾斜30o之平板間的空氣流場分佈圖: (c) S=10mm;(d) S=12mm 53 圖 4-22 對於傾斜30o之平板間的空氣流場分佈圖: (e) S=16mm;(f) S=20mm 54 圖 4-23 對於傾斜60o之平板間的空氣流場分佈圖: (a) S=6mm;(b) S=8mm 55 圖 4-24 對於傾斜60o之平板間的空氣流場分佈圖: (c) S=10mm;(d) S=12mm 56 圖 4-25 對於傾斜60o之平板間的空氣流場分佈圖: (e) S=16mm;(f) S=20mm 57 圖 4-26 對於傾斜90o之平板間的空氣流場分佈圖: (a) S=6mm;(b) S=8mm 58 圖 4-27 對於傾斜90o之平板間的空氣流場分佈圖: (c) S=10mm;(d) S=12mm 59 圖 4-28 對於傾斜90o之平板間的空氣流場分佈圖: (e) S=16mm;(f) S=20mm 60 圖 5-1 傾斜00之Ra數與紐賽數關係圖 68 圖 5-2 傾斜300之Ra數與紐賽數關係圖 68 圖 5-3 傾斜600之Ra數與紐賽數關係圖 69 圖 5-4 傾斜900之Ra數與紐賽數關係圖 69

    [1] Y. Mori, Y. Uchida, Forced convective heat transfer between horizontal flat plates, Int. J. Heat Mass Transfer 9, (1966) 803-817.

    [2] M. Akiyama, G.J. Hwang, K.C. Cheng, Experiments on the onset of longitudinal vortices in laminar forced convection between horizontal plates. J. Heat Transfer 93, (1971) 335-341.

    [3] D. M. Kim, R. Viskanta, Study of the effect of wall conductance on natural convection in differentially oriented square cavities, J. Fluid Mech. 144, (1984) 153-176.

    [4] A. Dalal, K. Das, Natural convection in a rectangular cavity heated form below and uniformly cooled form the top and both sides, Num. Heat Trans. Part A. 49, (2006) 301-322.

    [5] D. Mishra, K. Muralidhar, P. Munshi, Experimental study of Rayleigh-Bénard convection at intermediate Rayleigh numbers using interferometric tomopraphy, Fluid Dynamics Research. 25, (1999) 231-255.

    [6] K.R. Randall, J.W. Mitchell, M.M. El-Wakil, Natural convection heat transfer characteristics of flat plate enclosure, J. Heat Transfer. 101, (1979) 120-125.
    [7] M. A. R. Sharif, T. R. Mohammad, Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the side wall, Int. Thermal. Sci. 41, (2005) 865-878.

    [8] B.A. Meyer, J. W. Mitchell, M.M. El-Wakil, Natural convection heat transfer in moderate aspect ratio enclosure, J. Heat Transfer. 101, (1979) 655-659.

    [9] W. Koutsoheras, W.W.S. Charters, Natural convection phenomena in inclined cells with finite side wall-A numerical solution, Solar Energy. 19, (1977) 433-438.

    [10] B.A. Meyer, J. W. Mitchell, M.M. El-Wakil, The effect of thermal wall properties on natural convection on inclined rectangular cells , J. Heat Transfer. 104, (1982) 111-117.

    [11] K.G.T. Hollands, T.E. Unny, G.D. Raithby, L. Konicek, Free Convective Heat Transfer Across Inclined Air Layers , J. Heat Transfer. 98C, (1976) 189-193.

    [12] S.M. EISherbiny, G.D. Raithby, K.G.T. Hollands, Heat Transfer by Natural Convection Across Vertical and Inclined Air Layers , J. Heat Transfer. 104C, (1982) 96-102.

    [13] M. Corcione, Effect of thermal boundary conductions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above , Int. Thermal Sci. 3, (2003) 199-208.

    [14] G. De Vahl Davis, Natural convection of air in a square cavity :A bench mark numerical solution , International Journal for Numerical Methods in Fluids. 3, (1983) 249-264.

    [15] H. Mlaouah, T. Tsuji, Y. Nagano, A Study of Non-Boussinesq Effect on Transition of Thermally Induced Flow in a Square Cavity, Int. J. Heat Fluid Flow. 18, (1997) 100-106.

    [16] S. chantasiriwan, Inverse heat conduction problem of determining time-dependent heat transfer coefficient, Int. J. Heat Transfer. 42, (2000) 4275-4285.

    [17] T.J. Martin, G.S. Dulikravich, Inverse determination of steady heat convection coefficient distributions , J. Heat Transfer. 120, (1998) 328-334.

    [18] P.L. Masson, T. Loulou, E. Artioukhine, Estimation of a 2-D convection heat transfer coefficient during a test: comparison between two methods and experimental validation, Inverse Problem in Science and Engineering. 12, (2004) 595-617.
    [19] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problem, Int. J. Heat Mass Transfer. 44, (2001) 1455-1463.

    [20] H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of two-side boundary conduction for two-dimensional inverse heat conduction problem, Int. J. Heat Mass Transfer. 45, (2002) 15-23.

    [21] H.T. Chen and X.Y. Wu, Estimation of heat coefficient in two-dimensional inverse heat conduction problem, Numerical Heat Transfer. 50, (2006) 375-394.

    [22] H.T. Chen and X.Y. Wu, Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme, Int. J. Numerical Methods in Engineering. 73, (2008) 107-122.

    [23] H.T. Chen and J.Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problem, Int. J. Heat Mass Transfer. 34, (1991) 1301-1308.

    [24] H.T. Chen and J.Y. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer. 36, (1993) 2891-2898.

    [25] H.T. Chen and J.Y. Lin, Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer. 37, (1994) 153-164.

    [26] H.T. Chen and S.M. Chang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer. 33, (1990) 621-628.

    [27] H.T. Chen, S.Y. Lin, L.C. Fang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer. 33, (1990)

    下載圖示 校內:2016-07-08公開
    校外:2016-07-08公開
    QR CODE