| 研究生: |
康雅惠 KANG, YA-HUEI |
|---|---|
| 論文名稱: |
酸鹼浸漬黏土礦物之動力學研究 Kinetics study on the acid-base leaching of clay minerals |
| 指導教授: |
申永輝
SHEN, YONG-HUEI |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 黏土礦物 、淤泥 、溶出率 、浸漬 、動力學 、比表面積 |
| 外文關鍵詞: | Clay mineral, nature sediment, Extraction, Leaching, Kinetics, Specific surface area |
| 相關次數: | 點閱:129 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以對不同的黏土礦物,如膨潤石(Ca-Momtmorillonite、Na-Momtmorillonite、Fisher bentonite)、絹雲母、Kaolinite、Attapulgite及滑石作初步探討浸漬(leaching)實驗及動力學研究,得知其為一階化學反應控制,而Na-Montmorillonite、Ca-Montmorillonite、Kaolinite、Fisher bentonite之活化能分別為18.53kcal/mol、16.48 kcal/mol、20.1 kcal/mol、17.92 kcal/mol。由XRD分析Na-Montmorillonite 、Ca-Montmorillonite及kaolinite經長時間酸浸漬後晶體漸呈非晶質(amorphous)。而由BET結果得知膨潤石的比表面積會比其它黏土礦物大,和層間為何種陽離子有關。實驗結果得知Na-Montmorillonite的比表面積從26.74 m2/g增加為62.54 m2/g;Ca-Montmorillonite 從82.43 m2/g增加為204.54 m2/g;Kaolinite 從20.31 m2/g增加為52.66 m2/g。
之後在不同條件下(溫度、濃度、轉速)浸漬石門水庫淤泥來進一步探討淤泥的動力學。發現溶出率會隨著時間、溫度以及浸漬劑濃度的增加而增加。且在實驗中發現,酸比鹼的浸漬能力更好。而在經酸浸漬後,因粒徑變小,所以比表面積也會增加;且淤泥利用孔洞測試可得知孔洞的大小有些許增大的現象,自20.8nm增加為26.38nm。而經XRD分析,在一小時時淤泥中的綠泥石的繞射峰在浸漬後消失了,與鐵的溶出量約為90%符合。
在動力學方面探討水庫淤泥的浸漬反應。依實驗結果,以淤泥溶出率分別代入球狀、圓柱狀以及片狀式子中,得知淤泥為片狀模式,與一般黏土礦物為片狀結構(T-O-T)相符。把淤泥實驗結果帶入化學反應式中1-〖(1-x)〗^(1/3)=(bkC_A^n)/(ρr_0 ),求得為一階化學反應控制,其活化能平均為15 k cal/mol,跟化學反應控制的活化能需>10kcal/mol一致。
The results of a dissolution kinetics of clay minerals (Ca-Montmorillonite, Na-Montmorillonite, Fisher bentonite, Mica, Kaolinite, Attapulgite and Talc) and silt (Quartz,Illite,Chlorite)in acid and base were presented .
Effect of stirring speed, acid and base type, reaction temperature,and the concentration of acid and base on Al3+ dissolution rate and activation energy were determined . The results obtains show that extraction as a function of acid concentration, temperature and time. It was determined that stirring speed did not significantly affect Al3+ extraction compared with other experimental parameters.
In addition, the reaction residues at various levels of clay minerals were examined by X-ray diffraction (XRD). The decrease in crystallinity of clay minerals by the acid leaching was discussed as regards to the increase in the full width at half-maximum peak height. Formation of an amorphous phase with longer leaching times.
The clay minerals and silt of extraction rates were analyzed with the shrinking core models and the rate-limiting step was chemical reaction control and the reaction order with respect to clay minerals and silt were 1.A linear relationship between the 1-〖(1-x)〗^(1/3) and time was also characteristic for a chemical reaction control process.
The Na-Montmorillonite, Ca-Montmorillonite, Kaolinite,Fisher bentonite, and silt of activation energy of the chemical controlled step were 18.53kcal/mol,16.48 kcal/mol,20.1 kcal/mol,17.92 kcal/mol and15k cal/mol respectively.
Leaching caused the specific surface area of Na-Montmorillonite, Ca-Montmorillonite, Kaolinite and silt to increase 62.54 m2/g , 204.54 m2/g, 52.66m2/g and18.22 m2/g respectively. The specific surface area of silt increase reflecting in the porous silica product of 26.38nm mesopores.
[1]Klen,C., and Hurlbut,Jr, C.S.(1993),Manual of Mineralogy,21edition,John Wiley&Sons,Inc., pp.512。
[2]陳豪吉,以水庫淤泥製造輕質骨材及輕質混凝土研究,國科會報告,6月,2000年。
[3]林姵瑤,低含水量水庫淤泥混合配料燒製輕質骨材之研究,國立成功大學資源工程系, 7月,2007年。
[4]顏聰,輕質骨材混凝土之製造與應用,土木水利 第三十三卷,第五期,2006年。
[5]Kiyoshi Okada,Naoki Arimitsu , Preparation of porous silica from chlorite by selective acid leaching,(2005)116-124。
[6]Kiyoshi.Okada,Jadambaa.Temuujin,Selective .leaching.of.talc,(2003)159-165。
[7]Shun-ichi Ohta,Hiromoto Nakazawa,Porous clay-organic composites: Potential substitutes for polystyrene foam,(1995) 425-431。
[8]S.K.Mandal,P.C.Banerjee, Iron leaching from china clay with oxalic acid effect of different physic-chemical parameters,(2004)263-270。
[9]A.Steudel,L.F.Batenburg,H.R .Fischer,Alteration of non-swelling clay minerals and magadiite by acid activation,(2009)95-104。
[10]M. Modesti, S. Besco,A. Lorenzetti,V. Causin , C. Marega,J.W. Gilman et.,ABS/clay nanocomposites obtained by a solution technique: Influence of clay organic modifiers,92 (2007)
[11]L. P. Meier.,Nueesch,and F. T. Madsenz,Organic Pillared Clays,24–32 (2001)
[12]行政院經濟建設委員會,水庫淤泥生態性利用之整體研究,P.50,12月2004年。
[13] Corma.A,Perez-Pariente,J,Catalytic activity of modified silicates:Ⅰ.Dehydration of ethanol catalysed by acidic sepiolite Clay Minerals 22,423-433。
[14]Aznar,A.J,Gutierrez,E,Diaz,P.,Alvarez,A.,Poncelet,G.,Silica from sepiolite:preparation,textural properties and use as support to catalyst,Microporous Materials 6,105-114。
[15]胡紹華,電路板業之含重金屬汙泥資源化處理之研究,國立成功大學資源工程研究所,3月2007年。
[16]E.A.Abdel-Aal,Kinetics of sulfuric acid leaching of low-grade zinc silicate ore,(2000)247-254。
[17]A.Mergen,M.H.Demirhan,Dissolution kinetics of probertite in boric acid solution,(2009)16-20。
[18] Grim,R.E. (1959). Physico-Chemical properties of soils: clay
minerals. Journal of the Soil Mechanics and FoundationsDivisio,ASCE,Vol. 85, No. SM2, pp. 1-17。
[19] 蔡敏行,廖學誠,台東向陽地區絹雲母、葉蠟石之選礦程序與經濟評估之研究,行政院國家科學委員會專題研究報告,1989年。
[20] 林孟君,乙烯氧聚合物及界面活性劑吸附對膨潤土漿料流變性之影響,國立成功大學資源工程學系,7月2006年。
[21] 孫筱芳,蒙脫石插層幾丁聚醣之研究,國立成功大學資源工程學系,6月2004年。
[22] Bohn, H.L.,McNeal, B.L., and O’Connor, G..A. (1985).
Soil Chemistry, 2nd ed., John Wiley & Sons, New York。
[23] 劉慧玲,台東樟原黏土資源之有機黏土製備研究,國立成功大學資源工程學系碩士論文,6月 2001年。
[24] 王明光,環境土壤化學,五南圖書出版,p183~184,2000。
[25]洪鈴雅,奈米二氧化鈦粒子嵌入中孔洞氧化矽材之合成與分析及性質之探討,國立成功大學材料科學及工程學系,p.49,6月2007年。
[26] 王敏昭、王明光、國立編譯館主編,實用儀器分析,合記圖書出版發行p132~133,6月 2003年。
[27] P.Zhang,K.Yoshizuka,H.Tsuyama,Hydrometallurgy,P.45,1996年。
[28] T.N.Angelidis,E.Tourasanidis,E.Marinou,G.A Stalisis,Resources conservation and recycling,p.269,1995年。
[29] Levenspiel,O,Chemical reaction engineering,2nd edn,John Wiley&Sons,New York,1972。
[30]Yagi,S. and Kunii,D,5th Symposium(international) on
Combustion,Reinhold,New York,1955,p.231;Chem.Eng.(Japan),19,500(1995)。
[31] 林俊一,化學反應工程第三版,p.3,1990。
[32] 李洪桂等,濕法冶金學,中南大學出版社,p.78,12月1998年。
[33] Patricia A. Maurice, Melanie A. Vierkorn, Larry E. Hersman, Julia E. Fulghum,Dissolution of well and poorly ordered kaolinites by an aerobic bacterium,Chemical Geology 180 (2001) 81–97。
[34] Patricia M. Costanzo,Baseline Studies Of the clay minerals society source clays: introduction,Clays and Clay Minerals,Vol. 49, No. 5,(372–373) 2001。
[35] 施育仁,Swelling and organo-intercalation of hydrothermally Li-treated sericite,國立成功大學資源工程學系,6月 2009年。
[36] 伍美玲,台灣水庫淤泥之性質研究,國立成功大學資源工程學系, 6月2009年。
[37]傅建璋,升溫速率對石門水庫淤泥製備輕質骨材之影響,國立成功大學資源工程學系,7月2009年。
[38]張仲民,普通土壤學,國立編譯館出版,77年。
[39]Grim,R.E.,Clay Mineralogy,McGraw-Hill,New York,1953。
[40]Perez Rodriguez,J.L.,Maqueda,C.,Justo,A.,Pyrophyllite determination in mineral mixture,Clay and Minerals 33,(1985)563-566
[41]Temuujin,J.,Okada,K.,Jadambaa.,T.,MacKenzie,K.J.D,Amarsanaa,J.,Effect of grinding on the leaching behavior of pyrophyllite,Journal of the Euorpean Ceramics Society 23,(2003b)1277-1282。
[42]Luis Gonzalez Hernandez,Luis Ibarra Rueda,Andres Rodriguez Diaz,Cella Chamorro Anton,preparation of amorphous silica by acid dissolution of sepiolite:kinetic and textural study,CSIC,5月1985年。
[43]Kiyoshi Okada,Naoki Arimitsu,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.MacKenzie,Solid acidity of 2:1type clay minerals activated by selective leaching,(2006) 185-193。
[44]Novak,I.,Cicel,B. ,1978,Dissolution of smectites in hydrochlorite acid;Ⅱ.Dissolution rate as a function of crystallochemical composition.Clays Clay Min .26,289-296。
[45]A. Czímerová,J. Bujdák, R. DohrmannTraditional and novel methods for estimating the layer charge of smectites,Applied Clay Science 34 (2006) 2–13。
[46]Kiyoshi Okada,Naoki Arimitsu ,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.MacKenzie,Solid acidity of 2:1 type clay minerals activated by selective leaching,Applied Clay Science 31(2006)185-193。
[47]蘇佳琪,非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性研究,國立成功大學資源工程所,7月2009年。
[48]David A.Laird,Influence of layer charge on swelling of smectites,Applied Clay Science34(2006)74-87。
[49]J.P.Sancho,J.Ayala,M.P.Garcia,B.Fernandez,leaching behavior of bayer electrofilter fines in sulphuric acid,(2009)35-41。
[50]CHI Ru’an,TIAN Jun,GAO Hong,ZHOU Fang ,LIU Min et., kinetics of leaching flavonoids from pueraria lobata with Ethanol,(2006)42-406。
[51] Sleem ur Rahman,M.A. Al-Saleh,kinetic study of leaching process of Raney silver catalyst,(1999)229-233。
[52] Wladyslawa Mulak,Beata Miazga,Anna Szymczycha,Kinetics of nickel leaching from spent catalyst in sulphuric acid solution, (2005)231-235。
[53]N.Habbache,N.Alane,S.Djerad,L.Tifouti,leaching of copper oxide with different acid solution,(2009)503-508。
[54]M.K.Ghosh,R.P.Das,A.K.Biswas,Oxidative ammonia leaching of sphalerite PartⅠ:Noncatalytic kinetics,Int.J.Miner Process66(2002)241-254。
[55]Ballester A.,Verdeja L.F.,Sancho J.P.,Metalurgia Extractiva Vil 1.Madrid Ed Sintersis,(2000)181-190。
[56]Hong Young Sohn M.,Cinetica de los process de la metalurgia extractive,Ed Trillas.Mexico,(1986)167-188。
[57]Kiyoshi Okada,Naoki Arimitsu,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.,MacKenzie,Preparation of porous silica from chlorite by selective acid leaching,(2005)116-124。
[58] Huaming Yang,Chunfang Du,Yuehua Hu,Shengming Jin,Wuguo Yang,Aidong Tang,E.G.Avvakumov,Preparation of porous material from talc by mechanochemical treatment and subsequent leaching,(2006)290-297。
[59]B.B osthaus,chemical determination of tetrahedral ions in nontronite and montmorillonite,Gulf Research&Development Company,Pittsburgh。
[60]A.Steudel,L.F.Batenburg,H.R.Fischer,P.G.Weidler,K.Emmerich,Alteration.of swelling clay minerals by acid activation,(2009)105-115。
校內:2015-06-21公開