簡易檢索 / 詳目顯示

研究生: 康雅惠
KANG, YA-HUEI
論文名稱: 酸鹼浸漬黏土礦物之動力學研究
Kinetics study on the acid-base leaching of clay minerals
指導教授: 申永輝
SHEN, YONG-HUEI
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 黏土礦物淤泥溶出率浸漬動力學比表面積
外文關鍵詞: Clay mineral, nature sediment, Extraction, Leaching, Kinetics, Specific surface area
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以對不同的黏土礦物,如膨潤石(Ca-Momtmorillonite、Na-Momtmorillonite、Fisher bentonite)、絹雲母、Kaolinite、Attapulgite及滑石作初步探討浸漬(leaching)實驗及動力學研究,得知其為一階化學反應控制,而Na-Montmorillonite、Ca-Montmorillonite、Kaolinite、Fisher bentonite之活化能分別為18.53kcal/mol、16.48 kcal/mol、20.1 kcal/mol、17.92 kcal/mol。由XRD分析Na-Montmorillonite 、Ca-Montmorillonite及kaolinite經長時間酸浸漬後晶體漸呈非晶質(amorphous)。而由BET結果得知膨潤石的比表面積會比其它黏土礦物大,和層間為何種陽離子有關。實驗結果得知Na-Montmorillonite的比表面積從26.74 m2/g增加為62.54 m2/g;Ca-Montmorillonite 從82.43 m2/g增加為204.54 m2/g;Kaolinite 從20.31 m2/g增加為52.66 m2/g。
    之後在不同條件下(溫度、濃度、轉速)浸漬石門水庫淤泥來進一步探討淤泥的動力學。發現溶出率會隨著時間、溫度以及浸漬劑濃度的增加而增加。且在實驗中發現,酸比鹼的浸漬能力更好。而在經酸浸漬後,因粒徑變小,所以比表面積也會增加;且淤泥利用孔洞測試可得知孔洞的大小有些許增大的現象,自20.8nm增加為26.38nm。而經XRD分析,在一小時時淤泥中的綠泥石的繞射峰在浸漬後消失了,與鐵的溶出量約為90%符合。
    在動力學方面探討水庫淤泥的浸漬反應。依實驗結果,以淤泥溶出率分別代入球狀、圓柱狀以及片狀式子中,得知淤泥為片狀模式,與一般黏土礦物為片狀結構(T-O-T)相符。把淤泥實驗結果帶入化學反應式中1-〖(1-x)〗^(1/3)=(bkC_A^n)/(ρr_0 ),求得為一階化學反應控制,其活化能平均為15 k cal/mol,跟化學反應控制的活化能需>10kcal/mol一致。

    The results of a dissolution kinetics of clay minerals (Ca-Montmorillonite, Na-Montmorillonite, Fisher bentonite, Mica, Kaolinite, Attapulgite and Talc) and silt (Quartz,Illite,Chlorite)in acid and base were presented .
    Effect of stirring speed, acid and base type, reaction temperature,and the concentration of acid and base on Al3+ dissolution rate and activation energy were determined . The results obtains show that extraction as a function of acid concentration, temperature and time. It was determined that stirring speed did not significantly affect Al3+ extraction compared with other experimental parameters.
    In addition, the reaction residues at various levels of clay minerals were examined by X-ray diffraction (XRD). The decrease in crystallinity of clay minerals by the acid leaching was discussed as regards to the increase in the full width at half-maximum peak height. Formation of an amorphous phase with longer leaching times.
    The clay minerals and silt of extraction rates were analyzed with the shrinking core models and the rate-limiting step was chemical reaction control and the reaction order with respect to clay minerals and silt were 1.A linear relationship between the 1-〖(1-x)〗^(1/3) and time was also characteristic for a chemical reaction control process.
    The Na-Montmorillonite, Ca-Montmorillonite, Kaolinite,Fisher bentonite, and silt of activation energy of the chemical controlled step were 18.53kcal/mol,16.48 kcal/mol,20.1 kcal/mol,17.92 kcal/mol and15k cal/mol respectively.
    Leaching caused the specific surface area of Na-Montmorillonite, Ca-Montmorillonite, Kaolinite and silt to increase 62.54 m2/g , 204.54 m2/g, 52.66m2/g and18.22 m2/g respectively. The specific surface area of silt increase reflecting in the porous silica product of 26.38nm mesopores.

    目錄 摘要.....................................................................................................Ⅰ Abstract................................................................................................Ⅲ 致謝.....................................................................................................Ⅳ 目錄.....................................................................................................Ⅴ 表目錄.................................................................................................Ⅸ 圖目錄.................................................................................................Ⅹ 第一章 緒論........................................................................................1 1-1 研究動機......................................................................................1 1-2 研究目的......................................................................................2 第二章 文獻回顧與理論基礎..............................................................3 2-1 黏土礦物結晶構造與特性...............................................................3 2-2 黏土分類.......................................................................................6 2-3 絹雲母..........................................................................................8 2-4 厄帖浦石(Attapulgite)....................................................................8 2-5 膨潤石族的構造與性質..................................................................9 2-6 石門水庫淤泥特性........................................................................13 2-7 離子交換理論............................................................................18 2-8 離子交換選擇性................................................................................18 2-9 氮氣等溫吸附/脫附測量........................................................................19 2-10 氮氣等溫吸/脫附曲線之類型..............................................................20 2-11 濕法冶金概念.............................................................................23 2-11-1冶煉法...................................................................................24 2-11-2濕式冶煉法...........................................................................24 2-11-3濕式冶金之浸漬溶蝕原理.......................................................25 2-12 動力學探討................................................................................26 2-12-1 速率方程式..........................................................................31 2-12-2 形狀模式討論.......................................................................32 2-12-3 活化能與溫度關係................................................................34 2-12-4 化學反應速率控制................................................................35 2-12-5 擴散反應速率控制................................................................38 第三章實驗方法與步驟......................................................................48 3-1 實驗流程.............................................................................................48 3-2 實驗方法.............................................................................................50 3-2-1 樣品準備......................................................................................50 3-2-2 絹雲母脫結晶水熱處理.................................................................50 3-2-3 實驗儀器......................................................................................51 3-3 性質分析.............................................................................................52 3-3-1 淤泥礦物組成...............................................................................52 3-3-2 淤泥的化學組成............................................................................53 第四章 結果與討論...........................................................................54 4-1 不同黏土礦物Al3+溶出率.....................................................................54 4-2 反應控制及其活化能探討....................................................................58 4-3 黏土礦物之BET及XRD鑑定..............................................................64 4-4 Fisher bentonite之離子交換...................................................................67 4-5 酸、鹼對石門水庫淤泥溶出率的影響...................................................69 4-6轉速對石門水庫淤泥溶出率的影響......................................................72 4-7硫酸濃度對石門水庫淤泥溶出率的影響................................................74 4-8溫度對石門水庫淤泥浸漬溶出率的影響................................................76 4-9 石門水庫淤泥粒徑分佈及XRD鑑定.....................................................78 4-10石門水庫淤泥BET及孔洞測量............................................................81 4-11 石門水庫淤泥動力學探討..................................................................83 4-11-1反應速率為化學控制....................................................................83 4-11-2 形狀模式探討.............................................................................83 4-11-3 活化能........................................................................................86 第五章 結論......................................................................................89 第六章 未來建議..............................................................................91 參考文獻............................................................................................92

    [1]Klen,C., and Hurlbut,Jr, C.S.(1993),Manual of Mineralogy,21edition,John Wiley&Sons,Inc., pp.512。
    [2]陳豪吉,以水庫淤泥製造輕質骨材及輕質混凝土研究,國科會報告,6月,2000年。
    [3]林姵瑤,低含水量水庫淤泥混合配料燒製輕質骨材之研究,國立成功大學資源工程系, 7月,2007年。
    [4]顏聰,輕質骨材混凝土之製造與應用,土木水利 第三十三卷,第五期,2006年。
    [5]Kiyoshi Okada,Naoki Arimitsu , Preparation of porous silica from chlorite by selective acid leaching,(2005)116-124。
    [6]Kiyoshi.Okada,Jadambaa.Temuujin,Selective .leaching.of.talc,(2003)159-165。
    [7]Shun-ichi Ohta,Hiromoto Nakazawa,Porous clay-organic composites: Potential substitutes for polystyrene foam,(1995) 425-431。
    [8]S.K.Mandal,P.C.Banerjee, Iron leaching from china clay with oxalic acid effect of different physic-chemical parameters,(2004)263-270。
    [9]A.Steudel,L.F.Batenburg,H.R .Fischer,Alteration of non-swelling clay minerals and magadiite by acid activation,(2009)95-104。
    [10]M. Modesti, S. Besco,A. Lorenzetti,V. Causin , C. Marega,J.W. Gilman et.,ABS/clay nanocomposites obtained by a solution technique: Influence of clay organic modifiers,92 (2007)
    [11]L. P. Meier.,Nueesch,and F. T. Madsenz,Organic Pillared Clays,24–32 (2001)
    [12]行政院經濟建設委員會,水庫淤泥生態性利用之整體研究,P.50,12月2004年。
    [13] Corma.A,Perez-Pariente,J,Catalytic activity of modified silicates:Ⅰ.Dehydration of ethanol catalysed by acidic sepiolite Clay Minerals 22,423-433。
    [14]Aznar,A.J,Gutierrez,E,Diaz,P.,Alvarez,A.,Poncelet,G.,Silica from sepiolite:preparation,textural properties and use as support to catalyst,Microporous Materials 6,105-114。
    [15]胡紹華,電路板業之含重金屬汙泥資源化處理之研究,國立成功大學資源工程研究所,3月2007年。
    [16]E.A.Abdel-Aal,Kinetics of sulfuric acid leaching of low-grade zinc silicate ore,(2000)247-254。
    [17]A.Mergen,M.H.Demirhan,Dissolution kinetics of probertite in boric acid solution,(2009)16-20。
    [18] Grim,R.E. (1959). Physico-Chemical properties of soils: clay
    minerals. Journal of the Soil Mechanics and FoundationsDivisio,ASCE,Vol. 85, No. SM2, pp. 1-17。
    [19] 蔡敏行,廖學誠,台東向陽地區絹雲母、葉蠟石之選礦程序與經濟評估之研究,行政院國家科學委員會專題研究報告,1989年。
    [20] 林孟君,乙烯氧聚合物及界面活性劑吸附對膨潤土漿料流變性之影響,國立成功大學資源工程學系,7月2006年。
    [21] 孫筱芳,蒙脫石插層幾丁聚醣之研究,國立成功大學資源工程學系,6月2004年。
    [22] Bohn, H.L.,McNeal, B.L., and O’Connor, G..A. (1985).
    Soil Chemistry, 2nd ed., John Wiley & Sons, New York。
    [23] 劉慧玲,台東樟原黏土資源之有機黏土製備研究,國立成功大學資源工程學系碩士論文,6月 2001年。
    [24] 王明光,環境土壤化學,五南圖書出版,p183~184,2000。
    [25]洪鈴雅,奈米二氧化鈦粒子嵌入中孔洞氧化矽材之合成與分析及性質之探討,國立成功大學材料科學及工程學系,p.49,6月2007年。
    [26] 王敏昭、王明光、國立編譯館主編,實用儀器分析,合記圖書出版發行p132~133,6月 2003年。
    [27] P.Zhang,K.Yoshizuka,H.Tsuyama,Hydrometallurgy,P.45,1996年。
    [28] T.N.Angelidis,E.Tourasanidis,E.Marinou,G.A Stalisis,Resources conservation and recycling,p.269,1995年。
    [29] Levenspiel,O,Chemical reaction engineering,2nd edn,John Wiley&Sons,New York,1972。
    [30]Yagi,S. and Kunii,D,5th Symposium(international) on
    Combustion,Reinhold,New York,1955,p.231;Chem.Eng.(Japan),19,500(1995)。
    [31] 林俊一,化學反應工程第三版,p.3,1990。
    [32] 李洪桂等,濕法冶金學,中南大學出版社,p.78,12月1998年。
    [33] Patricia A. Maurice, Melanie A. Vierkorn, Larry E. Hersman, Julia E. Fulghum,Dissolution of well and poorly ordered kaolinites by an aerobic bacterium,Chemical Geology 180 (2001) 81–97。
    [34] Patricia M. Costanzo,Baseline Studies Of the clay minerals society source clays: introduction,Clays and Clay Minerals,Vol. 49, No. 5,(372–373) 2001。
    [35] 施育仁,Swelling and organo-intercalation of hydrothermally Li-treated sericite,國立成功大學資源工程學系,6月 2009年。
    [36] 伍美玲,台灣水庫淤泥之性質研究,國立成功大學資源工程學系, 6月2009年。
    [37]傅建璋,升溫速率對石門水庫淤泥製備輕質骨材之影響,國立成功大學資源工程學系,7月2009年。
    [38]張仲民,普通土壤學,國立編譯館出版,77年。
    [39]Grim,R.E.,Clay Mineralogy,McGraw-Hill,New York,1953。
    [40]Perez Rodriguez,J.L.,Maqueda,C.,Justo,A.,Pyrophyllite determination in mineral mixture,Clay and Minerals 33,(1985)563-566

    [41]Temuujin,J.,Okada,K.,Jadambaa.,T.,MacKenzie,K.J.D,Amarsanaa,J.,Effect of grinding on the leaching behavior of pyrophyllite,Journal of the Euorpean Ceramics Society 23,(2003b)1277-1282。
    [42]Luis Gonzalez Hernandez,Luis Ibarra Rueda,Andres Rodriguez Diaz,Cella Chamorro Anton,preparation of amorphous silica by acid dissolution of sepiolite:kinetic and textural study,CSIC,5月1985年。
    [43]Kiyoshi Okada,Naoki Arimitsu,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.MacKenzie,Solid acidity of 2:1type clay minerals activated by selective leaching,(2006) 185-193。
    [44]Novak,I.,Cicel,B. ,1978,Dissolution of smectites in hydrochlorite acid;Ⅱ.Dissolution rate as a function of crystallochemical composition.Clays Clay Min .26,289-296。
    [45]A. Czímerová,J. Bujdák, R. DohrmannTraditional and novel methods for estimating the layer charge of smectites,Applied Clay Science 34 (2006) 2–13。
    [46]Kiyoshi Okada,Naoki Arimitsu ,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.MacKenzie,Solid acidity of 2:1 type clay minerals activated by selective leaching,Applied Clay Science 31(2006)185-193。
    [47]蘇佳琪,非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性研究,國立成功大學資源工程所,7月2009年。
    [48]David A.Laird,Influence of layer charge on swelling of smectites,Applied Clay Science34(2006)74-87。
    [49]J.P.Sancho,J.Ayala,M.P.Garcia,B.Fernandez,leaching behavior of bayer electrofilter fines in sulphuric acid,(2009)35-41。
    [50]CHI Ru’an,TIAN Jun,GAO Hong,ZHOU Fang ,LIU Min et., kinetics of leaching flavonoids from pueraria lobata with Ethanol,(2006)42-406。
    [51] Sleem ur Rahman,M.A. Al-Saleh,kinetic study of leaching process of Raney silver catalyst,(1999)229-233。
    [52] Wladyslawa Mulak,Beata Miazga,Anna Szymczycha,Kinetics of nickel leaching from spent catalyst in sulphuric acid solution, (2005)231-235。
    [53]N.Habbache,N.Alane,S.Djerad,L.Tifouti,leaching of copper oxide with different acid solution,(2009)503-508。
    [54]M.K.Ghosh,R.P.Das,A.K.Biswas,Oxidative ammonia leaching of sphalerite PartⅠ:Noncatalytic kinetics,Int.J.Miner Process66(2002)241-254。
    [55]Ballester A.,Verdeja L.F.,Sancho J.P.,Metalurgia Extractiva Vil 1.Madrid Ed Sintersis,(2000)181-190。
    [56]Hong Young Sohn M.,Cinetica de los process de la metalurgia extractive,Ed Trillas.Mexico,(1986)167-188。
    [57]Kiyoshi Okada,Naoki Arimitsu,Yoshikazu Kameshima,Akira Nakajima,Kenneth J.D.,MacKenzie,Preparation of porous silica from chlorite by selective acid leaching,(2005)116-124。
    [58] Huaming Yang,Chunfang Du,Yuehua Hu,Shengming Jin,Wuguo Yang,Aidong Tang,E.G.Avvakumov,Preparation of porous material from talc by mechanochemical treatment and subsequent leaching,(2006)290-297。
    [59]B.B osthaus,chemical determination of tetrahedral ions in nontronite and montmorillonite,Gulf Research&Development Company,Pittsburgh。
    [60]A.Steudel,L.F.Batenburg,H.R.Fischer,P.G.Weidler,K.Emmerich,Alteration.of swelling clay minerals by acid activation,(2009)105-115。

    無法下載圖示 校內:2015-06-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE