簡易檢索 / 詳目顯示

研究生: 邱品翔
Chiu, Pin-Hsiang
論文名稱: 特殊形狀金屬奈米粒子製備技術及其光電應用
Fabrication Techniques of Special-Shaped Metal Nanoparticles for Electro-Optical Application
指導教授: 王永和
Wang, Yeong-Her
黃建榮
Huang, Chien-Jung
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 149
中文關鍵詞: 電化學奈米粒子界面活性劑表面電漿共振高分子發光元件
外文關鍵詞: Surfactant, Surface plasmon resonance, Polymer light-emitting device, Electrochemical, Nanoparticles
相關次數: 點閱:97下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米粒子廣泛與密集的被研究在生物學、非線性光學開關、表面修飾為了增強表面拉曼散射、免疫分析標籤、光學對比劑、觸媒催化等應用,在這些的應用中所產生的物理、光學與化學等特性,是強烈的取決在奈米粒子的尺寸與形狀。在先前許多的研究報導中,一般金屬奈米粒子的形狀大部份是球形。然而非球形的金屬奈米粒子將會產生有所不同的獨特特性,可能引起更多的被研究的興趣與應用,發展能有效控制金屬奈米粒子的大小與開發新穎的特殊粒子形狀將是個非常重要的研究課題。因此,本論文的研究方向主要為特殊形狀金屬奈米粒子製備技術及其光電應用,以下將簡述之。
    本論文的第一部份為以電化學方法製作特殊彎曲形狀的金奈米粒子,成長溶液為界面活性劑與異丙醇溶劑。實驗中發現異丙醇溶劑的劑量從50 mL增加至300 mL時,則金奈米粒子的形狀外觀比例(aspect ratio)會從1.06增加至1.46 (即是從球形變成彎曲的棒狀形),而以吸收光譜分析此材料的表面電漿共振(surface plasmon resonance; SPR)波長的位置,呈現紅位移從532 nm偏移至560 nm。
    第二部份為以電化學方法製作大量且大小均勻的金奈米立方體,成長溶液為介面活性劑與丙酮溶劑。當粒子的形狀從球形變成立方體時,則此材料的表面電漿共振波長的位置呈現紅位移。以選擇區域電子繞射觀察此材料的結晶特性,金奈米立方體為單晶結構且晶格常數為4.068 Å。金奈米立方體的每邊的邊緣長度約為30 nm。
    第三部份為以電化學方法製作高分散性的金奈米啞鈴型粒子,藉由控制成長溶液中的丙酮溶劑的劑量,金奈米粒子的形狀會從棒狀變成為啞鈴狀。金奈米啞鈴型與棒狀的差別為腰部大小比兩邊來的小,而此材料的剖面為八邊型結構,整個形狀外觀比例約為3。
    第四部份為以種子間接成長法製作金奈米狗棒粒子,實驗發現粒子的形狀取決於添加維他命C至成長溶液中的劑量。維他命C的劑量從10 mL增加至40 mL時,金奈米狗棒粒子的形狀外觀比例從2.34減小至1.46,而此材料的表面電漿共振波長位置呈現藍位移從823 nm偏移至676 nm。
    第五部份為以溶凝膠方法製作金核心-氧化矽殼層之複合奈米粒子,成長溶液為tetraethyl orthosilicate (TEOS)、異丙醇、氨水與去離子水。將氧化矽殼層成長於金奈米粒子(30 nm)的表面是藉由含有矽的TEOS前驅物的水解反應與縮合反應。研究發現控制去離子水的劑量從1 mL至9 mL,則氧化矽殼層的厚度從10 nm增加至120 nm,並以吸收光譜儀分析此材料的表面電漿共振波長位置從528 nm紅位移至537 nm。另外,當成長溶液的酸鹼值高於10.85時,氧化矽殼層無法披覆於金奈米粒子的表面。
    本論文最後的部分為以多層覆蓋方式封裝塑膠基板上的高分子發光元件,此多層覆蓋方式為第一層為金核心-氧化矽殼層之複合奈米粒子混合於環氧樹脂中,並塗佈於元件上方,第二層以蒸鍍法製作二氧化矽層。此多層覆蓋方式保護元件,元件在長時間操作下並無產生暗點,元件壽命的半衰期為1360小時,比起元件沒有任何覆蓋的壽命半衰期高於7倍。這個多層覆蓋中含有金核心-氧化矽殼層之複合奈米粒子能有效阻隔元件外部的水氣與溼氣進入到元件中,能應用到塑膠基板上保護及封裝高分子發光元件上。

    Extensive and intensive investigation of metal nanoparticles in biology, nonlinear optical switching, the formation of a modified surfaces for surface-enhanced Raman scattering, immunoassay labeling, optical contrast agents and catalysis have revealed that the size or shape of the particles are strongly dependent on physical, optical and chemical properties. Thus, metal nanoparticles become very reactive in the nanosize range. Most of the previous works regarding metal nanoparticles deals with those that have spherical morphology. However, nonspherical metal nanoparticles should have different, and perhaps more interesting, properties and applications. The development of well-controlled shapes and novel structures for metal nanoparticles therefore has become a very important issue. In this thesis, the studies focus on the fabrication techniques of special-shaped metal nanoparticles for electro-optical application.
    The first part is concerned with the synthesis of crooked gold nanocrystals (CGNCs) by an electrochemical technique using micelle templates formed by two surfactants with different amounts of isopropanol solvent. To investigate the influence of isopropanol solvent on the CGNCs, the amount of isopropanol was varied in the range from 50 to 300 mL. It was found that the aspect ratios of CGNCs were in the range from 1.06 to 1.46, and the ultraviolet-visible optical absorption measurement revealed a pronounced red-shift of the surface plasmon band from 532 to 560 nm.
    The second part is related to the rapid synthesis of a large quantity of uniform-sized gold nanocubes by an electrochemical method, using a surfactant solution and acetone. A red-shift is observed in ultraviolet-visible absorption spectra as the shape of gold nanoparticles changes from spherical to cubic. The selected area electron diffraction (SAED) patterns reveal that the gold nanocubes are single-crystalline with lattice constant a = 4.068 Å. The nanocube edge is about 30 nm long.
    The third part is related that well-dispersed gold nanodumbbells (GNDs) in aqueous phase have been successfully fabricated by an electrochemical method. The role of acetone solvent is found to change the gold nanopartilces shape from rod to dumbbell. The shape of GNDs has fatter in two ends and thinner in middle section. These GNDs exhibit octagon structure in cross-section and aspect ratio of around 3.
    In fourth part, the novel gold nanodogbones (GDBs) are successful fabricated using a simple seeded mediated growth (SMG) method. The shapes of GDBs depend on the amount of added vitamin C solvent. To investigate the influence of vitamin C solvent on the GDBs, the amount of vitamin C solvent was varied in the range from 10 to 40 μL. It is found that the aspect ratios of GDBs were in the range from 2.34 to 1.46, and the UV–vis absorption measurement revealed a pronounced blue-shift on the longitudinal surface plasmon resonance band from 823 to 676 nm.
    The fifth part is related to the fabrication of gold−silica composite nanoparticles with a core−shell structure by using a simple sol−gel method. The growth solution is prepared by tetraethyl orthosilicate (TEOS), isopropanol solvent, ammonia and water. The growth of silica shell on gold nanoparticles involved the base-catalyzed hydrolysis of TEOS and subsequent condensation of silica onto the surface of gold nanoparticles. The size of spherical gold core is about 30 nm. Experimental results reveal that the coating thickness of silica shell could be conveniently controlled in the range of 10 to 120 nm by changing the amount of water from 1 to 9 mL. The UV−vis absorption measurement revealed a pronounced red-shift on the surface plasmon resonance band from 528 to 537 nm. The analysis of pH value indicated that the silica shell can not be coated at pH >10.85.
    In final part, we report on lifetime characteristics of flexible polymer light-emitting devices (FPLEDs) containing the multilayer encapsulation. The multilayer encapsulation was prepared by the novel epoxy/silica coated gold nanoparticles resin (ESGR) and the SiO2 layer. The devices encapsulated with multilayer encapsulation exhibited no dark spots and the half-lifetime of device was 1360 h, seven times longer than that of a device without encapsulation. These results confirmed that the multilayer encapsulation with ESGR, which restrict the permeation of moisture that penetrated into the devices, could be applied to the encapsulation of FPLEDs.

    Chinese Abstract......................................vii English Abstract.......................................ix Acknowledgements........................................xi Contents...............................................xii Figure Captions........................................xiv Table Captions.......................................xviii Chapter 1 Introduction 1.1 Development of Metal Nanoparticles...................1 1.2 Motivation...........................................2 1.3 Organization.........................................3 Chapter 2 Fabrication of Metal Nanoparticles 2.1 Introduction.........................................5 2.2 Physical method......................................5 2.3 Chemical method......................................7 Chapter 3 Fabrication of the Spherical Gold Nanoparticles by Electrochemical Method 3.1 Introduction........................................11 3.2 Experimental........................................12 3.3 Results and Discussion..............................13 3.3.1 Influence of the Amount of Surfactant on Particle Size....................................................13 3.3.2 Controlling the Size of Particles by Changing the Current Density.........................................16 3.3.3 Effect of Growth Temperature on Particle Size.....18 Chapter 4 Fabrication of the Crooked Gold Nanorods and Networks by Electrochemical Method 4.1 Introduction........................................20 4.2 Experimental........................................21 4.3 Results and Discussion..............................23 4.3.1 Structures of Crooked Gold Nanorods...............23 4.3.2 Controlling Shapes of Crooked Gold Nanorods by Various Amount of isopropanol...........................24 4.3.3 Structures of Gold Networks.......................25 4.3.4 Absorption Spectrum of Crooked Gold Nanorods and Gold Networks...........................................25 4.3.5 Formation Mechanisms of Crooked Nanorods and Networks Structures.....................................27 Chapter 5 Fabrication of the Gold Nanocubes by Electrochemical Method 5.1 Introduction........................................29 5.2 Experimental........................................30 5.3 Results and Discussion..............................31 5.3.1 Influence of the Amount of Addition Acetone on Particle Shapes.........................................31 5.3.2 Absorption Spectrum of Gold Nanocubes.............31 5.3.3 Structures of Gold Nanocubes......................32 5.3.4 Formation Mechanisms of Gold Nanocubes............34 Chapter 6 Fabrication of the Gold Nanodumbbells by Electrochemical Method 6.1 Introduction........................................35 6.2 Experimental........................................36 6.3 Results and Discussion..............................38 6.3.1 Structure and Shape of the Gold Nanodumbbells.....38 6.3.2 Composition and Elemental Analysis of the Gold Nanodumbbells...........................................40 6.3.3 Optical Behaviour of the Gold Nanodumbbells.......41 6.3.4 Morphology Characterization of the Gold Nanodumbbells...........................................41 6.3.5 Proposed Growth Mechanisms of the Gold Nanodumbbells...........................................44 Chapter 7 Fabrication of the Gold Nanodogbones by the Seeded Mediated Growth Method 7.1 Introduction........................................46 7.2 Experimental........................................47 7.3 Results and Discussion..............................49 7.3.1 Effect of Amount of Added Vitamin C on Shape of the Gold Nanodogbones.......................................49 7.3.2 Optical Behavior of the Gold Nanodogbones.........50 7.3.3 Structure of the Gold Nanodogbones................51 7.3.4 Composition and Elemental Analysis of the Gold Nanodogbones............................................51 7.3.5 Morphology Characterization of the Gold Nanodogbones............................................52 7.3.6 Growth Mechanisms of the Gold Nanodogbones........53 Chapter 8 Fabrication of the Gold-Silica Core-Shell Nanoparticles by the Sol-Gel Method 8.1 Introduction........................................54 8.2 Experimental........................................56 8.3 Results and Discussion..............................57 8.3.1 Influence of Amount of Water on Coating Thickness of Silica Shell............................................57 8.3.2 Effect of pH on Coating thickness of Silica Shell.59 8.3.3 Optical Behavior of Gold-Silica Core-Shell Nanoparticles...........................................59 8.3.4 Structure and Morphology of Gold-Silica Core-Shell Nanoparticles...........................................61 8.3.5 Composition and Elemental Analysis of the Gold-Silica Core-Shell Nanoparticles...61 Chapter 9 Enhanced Lifetime Characteristics in Flexible Polymer Light-Emitting Devices (FPLED) by the Silica-Coated Gold Nanoparticles 9.1 The Silica-Coated Gold Nanoparticles Encapsulation of FPLEDs..................................................63 9.1.1 Introduction......................................63 9.1.2 Experimental......................................63 9.1.3 Results and Discussion............................64 9.2 Encapsulation of FPLEDs by Epoxy/Silica-Coated Gold Nanoparticles Resin (ESGR).......66 9.2.1 Introduction......................................66 9.2.2 Experimental......................................67 9.2.3 Results and Discussion............................67 Chapter 10 Conclusions and Future Works 10.1 Conclusions........................................70 10.2 Future Works.......................................72 References..............................................73 List of Publication....................................147

    References
    1. G. Schmid, Nanoparticles from Theory to Application, Academic Press, Wiley VCH, New York, 2004.
    2. M. Faraday, Phil. Trans. Roy. Soc. 147, 145 (1857).
    3. J. M. Thomas, Pure Appl. Chem. 60, 1517 (1988).
    4. R. Zsigmondy, Colloids and the Ultra-microscope, Wiley VCH, New York, 1909.
    5. J. Turkevitch, P. C. Stevenson, J. Hillier, Disc. Faraday Soc. 11, 55 (1951).
    6. J. Turkevitch, Gold Bulletin, 18, 86 (1985).
    7. A. P. Weber, M. Seipenbusch and G. Kasper, J. Phys. Chem. A 105, 8958 (2001).
    8. I. F. Urban, A. Hosseini-Tehrani, P. Griffiths, A. Khabari, Y. W. Kim and I. Petrov, J Vac Sci Technol B 20, 995 (2002).
    9. N. Randrianantoandro, A. M. Mercier, M. Hervieu and J.M. Greneche, Mater. Lett. 47, 150 (2001).
    10. A. Fojtik, A. Ber and B. G. Henglein, Phys. Chem. 97, 252 (1993)
    11. M. T. Reetz, W. Helbig and S. A. Quaiser, In Active Metals: Preparation, Characterization, Applications; Fűrstner, A., Ed.; VCH: New York, (1996).
    12. M. T. Reetz and W. Helbig, J. Am. Chem. Soc. 116, 7401 (1994).
    13. M. T. Reetz and S. A.Quaiser, Angew. Chem. Int. Ed. Engl. 34, 2240 (1995).
    14. K. Esumi, M. Suzuki, T. Tano, K. Torigoe and K. Meguro, Colloids Surf. 55, 9 (1991).
    15. K. Esumi, T. Tano and K. Meguro, Langmuir 5, 268 (1989).
    16. K. Esumi, O. Sadakane, K. Torigoe and K. Meguro, Colloids Surf. 62, 255 (1992).
    17. J. D. Aiken and R. G. Finke, J. Mol. Catal. A: Chem. 145, 1 (1999).
    18. J. D. Aiken, Y. Lin and R. G. Finke, J. Mol. Catal. A: Chem. 114, 29 (1996).
    19. K. S. Suslick, S. B. Choe, A. A. Cichowlas and M. W. Grinstaff, Nature 353, 414 (1991).
    20. K. S. Suslick, T. Hyeon and M. Fang, Chem. Mater. 8, 2172 (1996).
    21. J. S. Bradley, E. W. Hill, S. Behal, C. Klein, B. Chaudret, A. Duteil, Chem. Mater. 4, 1234 (1992).
    22. D. D. Caro and J. S. Bradley, New J. Chem. 22, 1267 (1998).
    23. A. Duteil, R. Queau, B. Chaudret, R. Mazel, C. Roucau and J. S. Bradley, Chem. Mater. 5, 341 (1993).
    24. M. Andrews, G. A. Ozin and C. G. Francis, Inorg. Synth. 22, 116 (1981).
    25. N. Toshima, M. Ohtaki and T. Teranishi, React. Polym. 15, 135 (1991).
    26. Y. C. Cheng, and W. D. Westwood, J. Electron Materials, 3, 37 (1974).
    27. G. Carotenuto, G. P. Pepe, and L. Nicolais, Eur. Phys. J. B., 16, 11 (2000).
    28. R. G. Freeman, K. C. Graber, K. J. Allison, and R. M. Bright, Science, 267, 1629 (1995).
    29. I. Gavazzi, M. V. Nermut, and P. C. Marchisio, J. Cell Sci., 94, 85 (1989).
    30. S. A. Boppart, B. E. Bouma, C. Pitris, and J. F. Southerm, Nat. Med., 4, 861 (1998).
    31. G. Schon, and U. Silmon, Colloid Polym. Sci., 273, 202 (1995).
    32. M. T. Reetz, and W. Helbig, J. Am. Chem. Soc., 116, 7401 (1994).
    33. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, and R. Vogel, Science, 267, 367 (1995).
    34. Y. L. Kelly, A. A. Lazarides, and G. C. Schatz, Computing in Sci and Engin., 67 (2001).
    35. R. G. Freeman, K. C. Graber, K. J. Allison, and R. M. Bright, Science, 267, 1629 (1995).
    36. C. Shaowei, and Y. Yiyun, J. Am. Chem. Soc., 124, 5280 (2002).
    37. M. Haruta, and M. Date, Applied Catalysis A., 222, 427 (2001).
    38. K. I. Kuge, M. Arisawa, N. Aoki, and A. Hasegawa, J. Appl. Phys. Jpn., 39, 6550 (2000).
    39. P. V. Kamat, M. Flumiani, and G. V. Hartland, J. Phys. Chem. B., 112, 3123 (1998).
    40. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, J. Phys. Chem. B., 101, 6661 (1997).
    41. B. Yin, H. Ma, S. Wang, and S. Chen, J. Phys. Chem. B., 107, 8898 (2003).
    42. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, Chem. Commun., 1671 (2000).
    43. L. Xu, W. L. Zhou, C. Frommen, R. H. Baughan, A. A. Zakhidov, L. M. Malkinski, J. Q. Wang, and J. B. Wiley, Chem. Commun., 1671 (2000).
    44. C. J. Huang, P. H. Chiu, M. D. Chen, and T. H. Meen, Jpn. J. Appl. Phys., 44, L941 (2005).
    45. C. J. Huang, Y. H. Wang, P. H. Chiu, and J. J. Lin, Chem. Lett, 35, 30 (2006).
    46. C. J. Huang, Y. H. Wang, P. H. Chiu, M. C. Shih, and T. H. Meen, Mater. Lett., 60, 1896 (2006).
    47. C. Pascal, J. L. Pascal, and F. Favier, Chem. Mater., 11, 141 (1999).
    48. G. Frens, Nature Phys. Sci., 241, 20 (1973).
    49. U. Kreibig, and M. Volmer, Optical Properties of Metal Clusters, Springer-Verlag: Heidelberg, Germany (1995).
    50. P. Mulvaney, L. M. Liz-Marzan, M. Giersig, and T. Ung, J. Mater. Chem., 10, 1259 (2000).
    51. M. Kawasaki, and K. Masuda, J. Phys. Chem. B., 109, 9379 (2005).
    52. O. V. Makarova, A. E. Ostafin, H. Miyoshi, J. R. J. Norrish, and D. Miesel, J. Phys. Chem. B., 103, 9080 (1999).
    53. A. Henglein, P. Mulvaney, and T. Linnert, Faradary Discuss., 92, 31 (1991).
    54. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmer, and R. L. Whetten, J. Phys. Chem. B., 101, 3706 (1997).
    55. N. III. Camillone, C. E. D. Chidsey, G. Liu, and G. Scoles, J. Chem. Phys., 98, 4234 (1993).
    56. J. F. Rivadulla, M. C. Vergara, M. C. Blanco, M. A. López-Quintela, and J. Rivas, J. Phys. Chem. B., 101, 8997 (1997).
    57. S. K. Ghosh, S. Nath, S. Kundu, K. Esumi, and T. Pal, J. Phys. Chem. B., 108, 13963 (2004).
    58. R. H. Doremus, J. Chem. Phys., 40, 2389 (1964).
    59. R. Gupta, M. J. Dyer, and W. A. Weimer, J. Appl. Phys., 92, 5264 (2002).
    60. B. Nikoobakht, and M. A. El-Sayed, Langmuir, 17, 6368 (2001).
    61. J. C. Fuggle and N. Mårtensson, J. Electron Spectrosc. Relat. Phenom., 21, 275 (1980).
    62. S. Evans, Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, edit. D. Briggs. Heyden; Son, London, Chapter 3, (1997).
    63. G. K. Wertheim, S. B. Dicenzo, and S. E. Youngquist, Phys. Rev. Lett., 51, 2310 (1983).
    64. S. Shukla, and S. Seal, NanoStructured Materials, 11, 1181 (1999).
    65. M. Paunovic, and M. Schlesinger, Fundamentals of Electrochemical Deposition, Wiley, New York (1998).
    66. G. Schon, and U. Silmon, Colloid Polym. Sci., 273, 202 (1995).
    67. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley, New York (1998).
    68. M. T. Reetz, M. Winter, R. Breinbauer, T. T. Albrecht, and W. Vogel, J. Chem. Eur., 7, 1084 (2001).
    69. G. T. Wei, F. K. Liu, C. R .C. Wang, Anal. Chem. 71, 2085 (1999).
    70. C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, J. Phys. Chem. 96, 7497 (1992).
    71. Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2, 165 (2002).
    72. F. Kim, J. H. Song, P. Yang, J. Am. Chem. Soc. 124, 14316 (2002).
    73. J. Gao, C. M. Bender, C. J. Murphy, Langmuir 19, 9065 (2003).
    74. Y. J. Zhu, X. L. Hu, Chem. Lett. 32, 1140 (2003).
    75. T. Reuter, O. Vidoni, V. Torma, G. Schmid, Nano Lett. 2, 709 (2002).
    76. F. Mafune´, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 12589 (2003).
    77. C. D. Chen, Y. T. Yeh, C. R. C. Wang, J. Phys. Chem. Solids 62, 1587 (2001).
    78. J. Y. Chang, J. J. Chang, B. Lo, S. Tzing, Y. Lin, Chem. Phys. Lett. 379, 261 (2003).
    79. I. Lisiecki, F. Billoudet, M.P. Pileni, J. Phys. Chem. 100, 4160 (1996).
    80. Q. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc. 126, 54 (2004).
    81. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 8124 (2004).
    82. S. Pang, T. Kondo, T. Kawai, Chem. Mater. 17, 3636 (2005).
    83. A. Chen, X. Peng, K. Koczkur, B. Miller, Chem. Commun. 1964 (2004).
    84. S.S. Chang, C.W. Shih, C.C. Chen, W.C. Lai, C.R.C. Wang, Lanmuir 15, 701 (1999).
    85. C.J. Huang, P.H. Chiu,Y.H. Wang, M.C. Shih, T.H. Meen, J. Electrochem. Soc. 153, D129 (2006).
    86. C. Pascal, J. L. Pascal, F. Favier, Chem. Mater. 11, 141 (1999).
    87. C. H. Kuo, T. F. Chiang, L. J. Chen, M. H. Huang, Langmuir 20, 7820 (2004).
    88. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin ,1995.
    89. M. B. Mohamed, S. Link, M. A. El-Sayed, J. Phys. Chem. B 102, 9370 (1998).
    90. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
    91. J. A. Creighton, D. G. Eadon, J. Chem. Soc. Faraday Trans. 87, 3881 (1991).
    92. I. Lisiecki, F. Billoudet, M. P. Pileni, J. Phys. Chem. 100, 4160 (1996).
    93. E.J. Zeman, G.C. Schatz, J. Phys. Chem. 91, 634 (1987).
    94. M. P. Cline, P. W. Barber, R. K. Chang, J. Opt. Soc. Am. B 3, 15 (1986).
    95. L. Pei, K. Mori, M. Adachi, Chem. Lett. 33, 324 (2004).
    96. T. Baun, D. Bethell, D.J. Schiffrin, Langmuir 15, 866 (1999).
    97. M. D. Musick, D. J. Pena, S. L. Botsko, T. M. McEvoy, J. N. Richardson, M. J. Natan, Langmuir 15, 844. (1999)
    98. M. T. Reetz, M. Winter, R. Breinbaur, T. T. Albrecht, W. Vogel, J. Chem. Eur. 7, 1084 (2001).
    99. B. Nikoobakht, M. A. El-Sayed, Langmuir 17, 6368 (2001).
    100. M. Tornblom, U. Henriksson, J. Phys. Chem. B 101, 6028 (1997).
    101. T. Yonezawa, S. Onoue, N. Kimizuka, Chem. Lett. 12, 1172 (2002).
    102. A. P. Alivisatos, Science, 271, 933 (1996).
    103. S. Link and M. A. El-Sayed, J. Phys. Chem. B, 103, 8410 (1999).
    104. M. A. El-Sayed, Chem. Res., 34, 257 (2001).
    105. R. S. Kane, R. E. Cohen, and R. Silbey, J. Phys. Chem., 100, 7928 (1996).
    106. A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
    107. T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992).
    108. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291, 1947 (2001).
    109. Y. B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett., 82, 1962 (2003).
    110. J. Y. Lao, J. Y. Huang, D. Z .Wang, and Z. F. Ren, Nano Lett., 3, 235 (2003).
    111. Y. G. Sun and Y. N. Xia, Science, 298, 2176 (2002).
    112. F. K. Lin and F. K. Ko, Chem. Lett., 33, 902 (2004).
    113. H. Zhang, C. Shen, S. Chen, Z. Xu, F. Liu, J. Li, and H, Gao, Nanotechnology, 16, 267 (2005).
    114. H. Zhu, Y. Wang, N. Wang, Y. Li, and J. Yang, Mater. Lett., 58, 2631 (2004).
    115. Q. Liu, Y. Ni, G. Yin, J. Hong, and Z. Xu, Mater. Chem. Phys., 89, 379 (2005).
    116. K. Yu, Y. Guo, X. Ding, J. Zhao, and Z. Wang, Mater. Lett., 59, 4013 (2005).
    117. S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, Angew. Chem. Int. Ed., 44, 4917 (2005).
    118. R. Liu, F. Oba, E. W. Bohannan, F. Ernst, and J. A. Switzer, Mater. Chem., 15, 4882 (2003).
    119. W. Lu, J. Fang, Y. Ding, and Z. L. Wang, J. Phys. Chem. B, 109, 19219 (2005).
    120. M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 116, 7401 (1994).
    121. M. T. Reetz, M. Winter, R. Breinbauer, T. T. Albrecht, and W. Vogel, Chem. Eur. J., 7, 1084 (2001).
    122. B. Yin, H. Ma, S. Wang, and S. Chen, J. Phys. Chem. B, 107, 8898 (2003).
    123. Y. Yu, S. Chang, C. Lee, and C. R. C. Wang, J. Phys. Chem. B, 101, 6661 (1997).
    124. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, Langmuir, 15, 701 (1999).
    125. C. H. Kuo, T. F. Chiang, L. J. Chen, and M. H. Huang, Langmuir, 20, 7820 (2004).
    126. R. Jin, S. Egusa, and N. F. Scherer, J. Am. Chem. Soc., 126, 9900 (2004).
    127. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Anal. Chem., 77, 3261 (2005).
    128. B. D. Cullity and S. R. Stock, Elements of X–Ray Diffraction, 3th ed., Prentice-Hall, Upper Saddle River, (2001).
    129. Z. L. Wang, J. Phys. Chem. B, 104, 1153 (2000).
    130. T. Yan, Z.G. Shen, J. F. Chen, X. L. Liu, X. Tao, and J. Yun, Chem. Lett., 8, 1196 (2005).
    131. A. Filankembo, S. Giorgio, I. Lisiecki, and M. P. Pileni, J. Phys. Chem. B, 107, 7492 (2003).
    132. S. Chen and L. C. David, J. Phys. Chem. B, 108, 5500 (2004).
    133. M. P. Pileni, Nature Mater., 2, 145 (2003).
    134. E. Y. Sheu, S. H. Chen, and J. H. Huang, J. Phys. Chem., 91, 1535 (1987).
    135. P. M. Lindemuth and G. L.Bertrand, J. Phys. Chem., 97, 7769 (1993).
    136. A. Khatory, F. Kern, F. Lequeux, J. Appel, G. Porte, M. Morie, A. Ott, and W. Urbach, Langmuir, 9, 933 (1993).
    137. S. Reekmans, H. Lou, M. V. D. Auweraer, and F. C. D. Schryver, Langmuir, 6, 628 (1990).
    138. V. Y. Bezzobotonov, S. Borbely, L. Cser, B. Farago, I. A. Gladkih, Y. M. Ostanevich, and S. Z.Vass, J. Phys. Chem., 92, 5730 (1988).
    139. M. Tornblom and U. Henriksson, J. Phys. Chem. B, 101, 6028 (1997).
    140. Y. C, Cheng and W. D. Westwood, J. Electron. Mater. 3, 37 (1974).
    141. G. Carotenuto, G.. P. Pepe, and L. Nicolais, J. Eur. Phys. B, 16 11 (2000).
    142. R. G. Freeman, K. C. Graber, K. J. Allison, and R. M. Bright, Science 267, 1629 (1995)
    143. I. Gavazzi, M. V. Nermut, and P. C. Marchisio, J. Cell Sci. 94, 85 (1989).
    144. S. A. Boppart, B. E. Bouma, C. Pitris, and J. F. Southerm, Nat. Med. 4, 861 (1998).
    145. G. Schon and U. Silmon, Colloid Polym. Sci. 273, 202 (1995).
    146. G. S. Metraux, Y. C. Cao, R. Jin, and C. A. Mirkin, Nano Lett. 3, 519 (2003)
    147. X. Sun, S. Dong, and E. Wang, Langmuir 21, 4710 (2005).
    148. S. Pang, T. Kondo, and T. Kawai, Chem. Mater. 17, 3636 (2005)
    149. L. Gou and C. J. Murphy, Chem. Mater. 17, 3668 (2005).
    150. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, J. Am. Chem. Soc. 127, 5312 (2005).
    151. N. S. Pesika, F. Fan, P. C. Searson, and K. J. Stebe, J. Am. Chem. Soc. 127, 11960 (2005).
    152. D. M. Kolb, R. Ullman, T. Will, Science 275, 1097 (1997).
    153. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, IBM J. Res. Dev. 42, 567 (1998).
    154. M. T. Reetz and W. Helbig, J. Am. Chem. Soc. 116, 7401 (1994).
    155. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, and R. Vogel, Science 267, 367 (1995).
    156. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, J. Phys. Chem. B 101, 6661 (1997)
    157. C. G. Wu and T. Bein, Science 264, 1757 (1994).
    158. L. Xu, W. L. Zhou, C. Frommen, R. H. Baughan, A. A. Zakhidov, L. M. Malkinski, J. Q. Wang, and J. B. Wiley, Chem. Commun. 997 (2000).
    159. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, Chem. Commun. 1671 (2000).
    160. L. Rodrigues-Sanchez, M. C. Blanco, and M. A. Lopez-Quintela, J. Phys. Chem. B 104, 9683 (2000).
    161. C. Pascal, J. L. Pascal, and F. Favier, Chem. Matt. 11, 141 (1999).
    162. C, J, Huang, Y. H. Wang, and P. H. Chiu, J. Electrochem. Soc.153, D129 (2006)
    163. T. K. San and C. J. Murphy, Langmuir 20, 6414 (2004)
    164. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 108, 5882 (2004).
    165. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, Nano Lett. 3 955 (2003).
    166. I. Lisiecki, A. Filankembo, H. S. Kongehl, K. Weiss, and M. P. Pileni, J. Phys. Rev. B 61, 4968 (2000).
    167. J. Wang, M. Tian, T. E. Mallouk, and M. H. W. Chan, J. Phys. Chem. B 108, 841 (2004).
    168. W. Cheng, S. Dong, and E. Wang, Langmuir 19, 9434 (2003).
    169. J. C. Fuggle and N. Mårtensson, J. Electron Spectrosc. Relat. Phenom. 21, 275 (1980).
    170. G. K. Wertheim, S. B. Dicenzo, and S. E. Youngquist, Phys. Rev. Lett. 51, 2310 (1983).
    171. S. Shukla, S. Seal, NanoStructured Materials 11, 1181 (1999).
    172. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1980).
    173. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, J. Mater. Chem. 12, 1765 (2002).
    174. J. Hernández, J. S. Gullón, E. Herrero, A. Aldaz, and J. M. Feliu, J. Phys. Chem. B 109, 12651 (2005).
    175. Z. Wang, R. Gao, M. A. El-Sayed, B. Nikooobakt, J. Phys. Chem. B 104, 5417 (2000).
    176. Z. L. Wang, M. B. Mohamed, S. Link, M. A. El-Sayed, Surf. Sci. 440, L809 (1999).
    177. Z .L. Wang, Elastic and Inelastic Scattering in Electron Diffraction and Imaging (Plenum Press, New York) (1995).
    178. J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, Angew. Chem. Int. Ed., 45,1116 (2006).
    179. M. H. Patrick, G. V. Hartland, T. Kosel, J. Perez-Juste, and P. Mulvaney, Nano Lett., 4, 2493 (2004).
    180. Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-Sayed, J. Phys. Chem. B, 104, 5417 (2002).
    181. Z. L. Wang, J. Phys. Chem. B, 104, 1153 (2000).
    182. M. T. Reetz, M. Winter, R. Breinbaur, T. T. Albrecht, and W. Vogel, Chem. Eur. J. 7, 1084 (2001).
    183. B. Nikoobakht and M. A. El-Sayed, Langmuir 17, 6368 (2001).
    184. J, X, Gau, C, M, Bender, and C, J, Murphy, Langmuir 19, 9065 (2003).
    185. M. Tornblom and U. Henriksson, J. Phys. Chem. B 101, 6028 (1997).
    186. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald and G. B. Sukhorukov, Nano Lett. 5, 1371 (2005).
    187. C. E. Gardner, M. A. Ghanem, J. W. Wilson and D. C. Smith, Anal. Chem. 78, 951 (2006).
    188. J. Spadavecchia, P. Prete, N. Lovergine, L. Tapfer and R. Rella, J. Phys. Chem. B 109, 17347 (2005).
    189. S. R. Johnson, S. D. Evans and R. Brydson, Langmuir 14, 6639 (1998).
    190. A. Henglein and M. Giersig, J. Phys. Chem. B 104, 5056 (2000).
    191. C. Pascal, J. L. Pascal and F. Favier, Chem. Mater. 11, 141 (2006).
    192. N. Lopez and J. K. Norskov, J. Am. Chem. Soc. 124, 11262 (2002).
    193. E. Prodan, P. Nordlander and N. J. Halas, Nano Lett. 3, 1411 (2003).
    194. J. Jiang, K. Bosnick, M. Maillard and L. Brus, J. Phys. Chem. B 107, 9964 (2003).
    195. Nie and S. R. Emory, Science 275, 1102 (1997)
    196. L. Ao, F. Gao, B. Pan, R. He and D. Cui, Anal. Chem. 78, 1104 (2006).
    197. J. Z. Zhang, A. M. Schwartzberg, J. T. Norman, C. D. Grant, J. Liu, F. Bridges and T. V. Buuren, Nano Lett. 5, 809 (2005).
    198. J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki and N. Sugimoto, Anal. Chem. 77, 4282 (2005).
    199. T. Liu, J. Tang, H. Zhao, Y. Deng and L. Jiang, Langmuir 18, 5624 (2002).
    200. A. Yu, Z. Liang, J. Cho and F. Caruso, Nano Lett. 3, 1203 (2003).
    201. G. S. Metraux, Y. C. Cao, R. Jin and C. A. Mirkin, Nano Lett. 3, 519 (2003).
    202. X. Sun, S. Dong and E. Wang, Langmuir 21, 4710 (2005).
    203. S. Pang, T. Kondo and T. Kawai, Chem. Mater. 17, 3636 (2005).
    204. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz and C. A .Mirkin, J. Am. Chem. Soc. 127, 5312 (2005).
    205. C. J. Huang, P. H. Chiu, Y. H. Wang, W. R. Chen, T. H. Meen and C. F. Yang, Nanotechnology 17, 5355 (2006).
    206. C. D. Chen, Y. T. Yeh and C. R. C. Wang, J. Phys. Chem. Solids. 62, 1587 (2001).
    207. K. Torigoe and K. Esumi, Langmuir 8, 59 (1992).
    208. L. P. Jiang, S. Xu, J. M. Zhu, J. R. Zhang, J. J. Zhu and H. Y. Chen, Inorg. Chem. 43, 5877 (2004).
    209. C. Ji and P. C. Searson, J. Phys. Chem. B 107, 4494 (2003).
    210. K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater. 12 306 (2000).
    211. J. Gao, C. M. Bender and C. J. Murphy, Langmuir 19, 9065 (2003).
    212. T. K. Sau and C. J. Murphy, Langmuir 20, 6414 (2004).
    213. C. C. Huang, Z. Yang and H. T. Chang, Langmuir 20, 6089 (2004).
    214. S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger and D. L. Carroll, J. Am. Chem. Soc. 125, 16186 (2003).
    215. S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
    216. J. C. Fuggle and N. Mårtensson, J. Electron Spectrosc. Relat. Phenom. 21, 275 (1980).
    217. G. K. Wertheim, S. B. Dicenzo and S. E. Youngquist, Phys. Rev. Lett. 51, 2310 (1983).
    218. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy and S. J. Mann, Mater. Chem. 12, 1765 (2002).
    219. J. Hernández, J. S. Gullón, E. Herrero, A. Aldaz and J. M. Feliu, J. Phys. Chem. B 109, 12651 (2005).
    220. Z. L. Wang, M. B. Mohamed, S. Link and M. A. El-Sayed, Surf. Sci. 440, L809 (1999).
    221. E. Y. Sheu, S. H. Chen and J. H. Huang, J. Phys. Chem. 91, 1535 (1987).
    222. P. M. Lindemuth and G. L.Bertrand, J. Phys. Chem. 97, 7769 (1993).
    223. A. Khatory, F. Kern, F. Lequeux, J. Appel, G. Porte, M. Morie, A. Ott and W. Urbach, Langmuir 9, 933 (1993).
    224. S. Reekmans, H. Lou, M. V. D. Auweraer and F. C. D. Schryver, Langmuir 6, 628 (1990).
    225. M. Tornblom and U. Henriksson, J. Phys. Chem. B 101 6028 (1997).
    226. J. I. Park and J. Cheon, J. Am. Chem. Soc., 123, 5743 (2001).
    227. Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett., 2, 183 (2002).
    228. C. J. Zhong and M. M. Maye, Adv. Mater., 13, 1507 (2001).
    229. A. Henglein, J. Phys. Chem. B, 104, 2201 (2000).
    230. M. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. Ge, W. A. Hines, and J. I. Budnick, J. Appl. Phys., 92, 491 (2002).
    231. R. A. Caruso and M. Antonietti, Chem. Mater., 13, 3272 (2001).
    232. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B, 107, 9964 (2003).
    233. T. Liu, J. Tang, H. Zhao, Y. Deng, and L. Jiang, Langmuir, 18, 5624 (2002).
    234. S. Nie and S. R. Emory, Science, 275, 1102 (1997).
    235. J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, Anal. Chem., 77, 4282 (2005).
    236. L. Ao, F. Gao, B. Pan, R. He, and D. Cui, Anal. Chem., 78, 1104 (2006).
    237. S. Gu, J. Onishi, E. Mine, Y. Kobayashi, and M. Konno, J. Colloid Interface Sci., 279, 284 (2004).
    238. M. R. Knecht and D. W. Wright, Chem. Mater., 16, 4890 (2004).
    239. V. Salgueiriňo-Maceira, F. Caruso, and L. M. Liz-Marzán, J. Phys. Chem. B, 107, 10990 (2003).
    240. P. Botella, A. Corma, and M. T. Navarro, Chem. Mater., 19, 1979 (2007).
    241. Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, J. W. Ager, M. K. Ko, H. Frei, P. Alivisatos, and G. A. Somorjai, Chem. Mater., 15, 1242 (2003).
    242. R. Thakur and R. B. Gupta, Ind. Eng. Chem. Res., 44, 3086 (2005).
    243. Y. Kobayashi, M. A. Correa-Duarte, and L. M. Liz-Marzán, Langmuir, 17, 6375 (2001).
    244. R. A. Caruso and M. Antonietti, Chem. Mater., 13, 3272 (2001).
    245. L. M. Liz-Marzán and A. P. Philipse, J. Colloid Interface Sci., 176, 459 (1995).
    246. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci., 26, 62 (1968).
    247. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329 (1996).
    248. L. M. Liz-Marzán, M. Giersig, and P, Mulvaney, Chem. Commun., 731 (1996).
    249. J. Xi and C. C. Perry, J. Non-Cryst. Solids, 353, 1212 (2007).
    250. E. Mine, A. Yamada, Y. Kobayashi, M. Konno, and L. M. Liz- Marzán, J. Colliod Interface Sci., 264, 385 (2003).
    251. C. J. Huang, P. H. Chiu, Y. H. Wang, K. L. Chen, J. J. Linn, and C. F. Yang, J. Electrochem. Soc., 153, D193 (2006).
    252. R. A. Caruso and M. Antonietti, Chem. Mater., 13, 3272 (2001).
    253. M. M. Y. Chen and A. Katz, Langmuir, 18, 8566 (2002).
    254. S. Underwod and P. Mulvaney, Langmuir, 10, 3427 (1994).
    255. C. F. Bohren and D. Huffman, Absorption of Scattering of Light by Small Particles, Wiley, New York (1983).
    256. P. Mulvaney, L. M. Liz-Marzán, M. Giersig, and T. Ung, J. Mater. Chem., 10, 1259 (2000).
    257. J. C. Fuggle and N. Martensson, J. Electron Spectrosc. Relat. Phenom., 21, 275 (1980).
    258. G. K. Wertheim, S. B. Dicenzo, and S. E. Youngquist, Phys. Rev. Lett., 51, 2310 (1983).
    259. S. Shukla and S. Seal, Nanostruct. Mater., 11, 1181 (1999).
    260. Y. T. Kim, D. S. Kim, and D. H. Yoon, Thin Solid Films, 475, 271 (2005).
    261. C. J. Huang, J. R. Chen, and S. P. Huang, Mater. Chem. Phys., 70, 78 (2001).
    262. J. D. Affinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenwell, and P. M. Martin, Thin Solid Films, 63, 290 (1996).
    263. A. P. Ghost, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, Appl. Phys. Lett., 86, 223503 (2005).
    264. P. H. Chiu, C. J. Huang, and Y. H. Wang, J. Electrochem. Soc., 155, K183 (2008).

    下載圖示 校內:立即公開
    校外:2009-10-28公開
    QR CODE