簡易檢索 / 詳目顯示

研究生: 徐明毅
Shiu, Ming-yi
論文名稱: 2-鹵化乙醇在Cu(100)及O/ Cu(100)表面上的反應路徑:密度泛函理論研究
The Reaction Paths of β-Halohydrins on Cu(100) and O/Cu(100) Surface:A Density Functional Theory Study
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 169
中文關鍵詞: 密度泛函理論鹵化乙醇
外文關鍵詞: DFT, Halohydrins
相關次數: 點閱:47下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是利用密度泛函理論(DFT)及搜尋過渡態和反應路徑的理論方法(LST/QST/CG、NEB),探討並比較鹵化乙醇與乙醇在Cu(100)和O/Cu(100)表面上催化反應的反應路徑。經由與實驗資料互相比較後,此套理論方法所建的模型及計算程序提供了上述反應的機構內涵。雖然對於BrCH2CH2OH和ClCH2CH2OH系統有部分不符合實驗結果(主要因素可能是理論計算低估了斷C-Br和C-Cl鍵的活化能),仍有改善的空間。但對ICH2CH2OH、FCH2CH2OH及CH3CH2OH等化合物,理論預測的反應路徑與實驗結果非常吻合。
    鹵化乙醇和乙醇在乾淨的Cu(100)上斷O-H鍵的過程中,理論計算預測需要的活化能較高(25~32 kcal/mol)且皆為吸熱反應(8~14 kcal/mol)。當乙醇的β碳上鍵結了電負度較高的F和Cl原子能穩定反應的過渡態,所以理論計算所需的活化能稍低。但是在O/Cu(100)上,鹵化乙醇和乙醇的OH基與預先吸附在銅表面的O原子之間形成氫鍵,形成穩定的吸附結構。當鹵化乙醇和乙醇進行O-H斷鍵反應時,因此氫鍵的作用大大地穩定了反應的過渡態,使活化能降低很多(只需6~10 kcal/mol),因此斷O-H鍵的反應較容易進行。另一方面,鹵化乙醇和鹵化乙烷在乾淨的Cu(100)上斷鹵-碳鍵的過程中,β碳上OH基對碳-鹵鍵斷裂所需的活化能有提高的效果。

    In the framework of density functional theory (DFT), the method of transition state searching / confirmation algorithm based on LST/QST/CG and NEB, have been employed to investigate the reaction pathways of β-halohydrins and ethanol on Cu(100) and O/Cu(100) surfaces. Comparing with the experiment data, the model built and calculation procedure indeed provides the insights of the eaction processes. Although the calculation results of BrCH2CH2OH and ClCH2CH2OH are not in accord with the experimental ones in part (probably due to underestimated activation energies of scission of the C-Br and C-Cl bonds ). The predicated reaction pathways of ICH2CH2OH , FCH2CH2OH and CH3CH2OH match well with the results found experimentally.
    The O-H bond scission of β-halohydrins and ethanol on Cu(100) is predicted to have a higher activation energy ( Ea = 25~32 kcal/mol) and the reactions are endothermic ( ΔH = 8~14 kcal/mol). A electronegative atom, such as F or Cl, bonded to β position of ethanol can slightly stabilize the transition state involving the O-H breakage. On a O/Cu(100) surface, the OH bond of β-halohydrins and ethanol adsorbed can form hydrogen bonding with the pre-covered oxygen. The transition states of O-H bond scission of β-halohydrins and ethanol are therefore stabilized and the activation energies are significantly decreased down to 6~10 kcal/mol. In comparison to ethyl halides, the activation energies of C-X bond scission ofβ-halohydrins on Cu(100) are slightly higher.

    第一章、文獻綜述 1 1.1 鹵化乙醇、乙醇、鹵化乙烷的相關催化反應文獻綜述 1 1.1.1 Oxametallacycles (-CH2CH2O-)的形成與其特性 2 1.1.2 乙醇在Cu(100)及O/Cu(100)表面上的熱化學反應 3 1.1.3 鹵化烷在Cu(100)表面上的熱化學反應 3 1.1.4 2-碘乙醇在Cu(100)及O/Cu(100)表面上的熱化學反應 4 1.1.5 2-溴乙醇在Cu(100)及O/Cu(100)表面上的熱化學反應 4 1.1.6 2-氯乙醇在Cu(100)及O/Cu(100)表面上的熱化學反應 5 1.1.7 2-氟乙醇在Cu(100)及O/Cu(100)表面上的熱化學反應 6 1.2 簡述表面催化過程的理論研究 10 1.2.1 催化反應的固體表面模型 10 1.2.2 固體表面的多相催化過程 11 1.2.3 量子化學模擬計算 13 1.3 研究工作的內容 16 第二章、研究表面反應路徑的理論方法和計算程序 17 2.1 量子力學方法 17 2.1.1 電子結構方法 20 2.1.2 從頭算波函數理論方法 21 2.1.2.1 自洽場(SCF)趨近 21 2.1.2.2 基函數組趨近 23 2.1.2.3 電子組態的考量 25 2.1.2.4 進階的從頭算波函數理論方法 25 2.1.3 從頭算密度泛函理論方法 28 2.1.4 常用的DFT計算軟體 31 2.1.4.1 Gaussian 31 2.1.4.2 ADF 32 2.1.4.3 Dmol 32 2.1.5 DMol3理論 33 2.1.6 DMol3重要參數設定 37 2.1.7 模型正確性vs方法正確性 38 2.2 尋找過渡態和反應路徑的理論方法 41 2.2.1 勢能面 41 2.2.2 找尋過渡態的演算方法( LST/QST/CG ) 46 2.2.3 尋找反應路徑的方法:MEP(Minimum Energy Path)及NEB(Nudged Elastic Band) 47 2.3 利用MS Modelling 4.0套裝軟件的DMol3模組探討反應路徑48 2.3.1 DMol3模組的計算工作 48 2.3.2 DMol3模組運作的基本步驟 49 2.3.3 DMol3模組中建立計算 49 2.3.3.1 單點能計算 49 2.3.3.2 幾何優化計算 50 2.3.3.3 搜尋過渡態 50 2.3.3.4 找尋反應路徑 51 2.3.4 DMol3模組中其他相關參數設定 51 2.4 利用程序升溫脫附理論估算反應活化能 53 第三章、結果與討論 56 3.1 Oxametallacycles在Cu(100)表面上的反應路徑 56 3.2 乙醇在Cu(100)及O/Cu(100)表面上的反應路徑 61 3.3 鹵化烷在Cu(100)表面上的反應路徑 64 3.4 2-碘乙醇在Cu(100)及O/Cu(100)表面上的反應路徑 69 3.5 2-溴乙醇在Cu(100)及O/Cu(100)表面上的反應路徑 74 3.6 2-氯乙醇在Cu(100)及O/Cu(100)表面上的反應路徑 81 3.7 2-氟乙醇在Cu(100)及O/Cu(100)表面上的反應路徑 85 3.8 β碳上鹵素原子對RO-H的O-H鍵斷鍵的影響 89 3.9 β碳上OH基對碳-鹵鍵斷裂的影響 90 第四章、結論 91 參考文獻 107 附錄A 鹵化乙醇、乙醇及鹵化乙烷在Cu(100)及O/Cu(100)表面上反應路徑的理論計算資料 112

    1. Yu-Ran Luo and Sidney W. Benson, J. Phys. Chem. 93 ,3304,1989.
    2. S. Linic, J.W. Medlin and M.A. Barteau, Langmuir. 18,5197,2002.
    3. Wu, G.; Stacchiola, D.; Kaltchev, M.; Tysoe, W. T. Surf. Sci. 463,81,2000.
    4. G.S. Jones, M. Mavrikakis, M.A. Barteau, J.M. Vohs, J. Am. Chem.Soc. 120, 3196,1998.
    5. N.F. Brown, M.A. Barteau, J. Phys. Chem. 98,12737,1994.
    6. Q. Zhao, F. Zaera, J. Phys. Chem. B 107, 9047,2003.
    7. P.-T. Chang, J.-J. Shih, K.-H. Kuo, C.-Y. Chen, T.-W. Fu, D.-L.Shieh,Y.-H. Liao, J.-L. Lin, J. Phys. Chem. 108,13320,2004.
    8. Y.-H. Liao , C.-Y. Chen , T.-W. Fu , C.-Y. Wang ,L.-J. Fan , Y.-W. Yang ,J.-L. Lin, Surf. Sci. 600,417,2006.
    9. C.-Y. Chen, P.-T. Chang, K.-H. Kuo, J.-J. Shih, J.-L. Lin,J. Phys. Chem. B 107,10488,2003.
    10. T.-W. Fu, Y.-H. Liao, C.-Y. Chen, P.-T. Chang, C.-Y. Wang, J.-L. Lin, J.Phys. Chem. B 109, 18921,2005.
    11. P.-T. Chang, K.-H. Kuo, J.-J. Shih, C.-Y. Chen, J.-L. Lin, Surf. Sci.561 ,208 ,2004.
    12. McBreen, P. H.; Erley, W.; Ibach, H. Surf. Sci.133, L469,1983.
    13. Richter, L. J.; Ho, W. J. Chem. Phys. 83, 2569,1985.
    14. Gleason, N.; Guevremont, J.; Zaera, F. J. Phys. Chem. B 107,11133,2003.
    15. Barros, R. B.; Garcia, A. R.; Ilharco, L. M. J. Phys. Chem. B 105, 11186,2001.
    16. Miles, S. L.; Bernasek, S. L.; Gland, J. L. J. Phys. Chem.87,1626,1983.
    17. Wiegand, B. C.; Uvdal, P. E.; Serafin. J. G.; Friend, C. M. J. Am.Chem. Soc. 113, 6686,1991.
    18. Berko, A.; Tarnoczi, T. I.; Solymosi, F. Surf. Sci. 189, 238,1987.
    19. Davis, J. L.; Barteau, M. A. Surf. Sci. 235, 235,1990.
    20. Sexton, B. A. Surf. Sci. 102, 271,1981.
    21. Sexton, B. A. Surf. Sci. 88, 299,1979.
    22. Wachs, I. E.; Madix, R. J. Appl. Surf. Sci. 1, 303,1978.
    23. Bowker, M.; Madix, R. J. Surf. Sci. 116, 549,1982.
    24. Camplin, J. P.; McCash, E. M. Surf. Sci. 360, 229,1996.
    25. Gellman, A. J. ; Dai, Q. J. Am. Chem. Soc. 115,114,1993.
    26. Lin, J.-L.; Teplyakov, A. V.; Bent, B. E. J. Phys. Chem. 100, 10721,1996.
    27. 中國南開大學化學學院物理化學學科 周玉花碩士論文 2005
    28. 中國天津大學化工學院化學工程學科 彭勃碩士論文 2005
    29. 林梦海, 量子化學計算方法與應用, 科學出版社, 2004年
    30. 林梦海, 量子化學簡明教程, 化學工業出版社, 2005年
    31. David Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, Wiley-Interscience, 2001.
    32. R. A. van Santen and Matthew Neurock, Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach,Wiley-VCH, 2006.
    33. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64,1045,1992.
    34. J.B.Foresman, A.Frisch, Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian, Gaussian, 1996.
    35. A. Nilssona, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H.Christensen, J. K. Norskov, Catalysis Letters 100, 111, 2005.
    36. R.M. Lambert, G. Pacchioni, Chemisorption and Reactivity on Supported Clusters and Thin Films, Kluwer, Dordrecht, 1997.
    37. B.Hammer, J. K. Norskov, Adv. Catal. 45, 2000.
    38. M.Neurock, R. A. van Santen, Catal. Rev. Sci. Eng. 37,557,1995.
    39. T. Ziegler, Chem. Rev. 91, 651, 1991.
    40. A. D. Becke, Phys. Rev. B 38, 3098, 1986.
    41. J. D. Perdew, Y. Wang, Phys. Rev. B 33, 8800, 1986.
    42. Perdew, J. P.; Wang, Y. Phys. Rev. B 45, 13244 ,1992.
    43. Perdew, J. P., Burke, K., and Ernzerhof, M. Phys. Rev. Lett. 77, 3865 ,1996.
    44. Hammer, B., Hansen, L. B., Norskov, J. K. Phys. Rev. B 59, 7413,1999.
    45. E.Wimmer, J. Comput-Aided Mater. Des. 1, 215, 1993.
    46. ADF2004.01, SCM, Theoretical Chemistry, Vrije University,Amsterdam, The Netherlands http://www.scm.com.
    47. B. Delley, Compu. Mat. Sci. 17,122, 2000.
    48. Materials Studio 4.0, Accelrys Software Inc., http://www.accelrys.com/products/mstudio/
    49. Materials Studio 4.0, Accelrys Software Inc., Materials Studio Online Help.
    50. M.E. Grillo, J.W. Andzelm, N. Govind, G. Fitzgerald, and K.B. Stark, Lect. Notes Phys. 642, 207,2004.
    51. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Computational Materials Science 28, 250 ,2003.
    52. T.A. Halgren, W.N. Lipscomb, Chem. Phys. Lett. 49,225,1977.
    53. S. Bell, J.S. Crighton, J. Chem. Phys. 80, 2464,1984.
    54. S. Fischer, M. Karplus, Chem. Phys. Lett. 194, 252, 1992.
    55. N. Govind, J.W. Andzelm, K. Reindel, G. Fitzgerald, Int. J. Mol. Sci. 3, 423, 2002.
    56. J. Andzelm, N. Govind, G. Fitzgerald, A. Maiti, Int. J. Quant. Chem. 91, 467, 2003.
    57. A. Maiti, N. Govind, P. Kung, D. King-Smith, J. Miller: C. Zhang, G.Whitwell, J. Chem. Phys. 117, 8080, 2002.
    58. G. Henkelman, G. Johannesson, H. Jonsson, Progress in Theoretical Chemistry and Physics, ed. by S.D. Schwartz, (Kluwer Academic Publishers 2000).
    59. Henkelman, G.; Jonsson, H. ; J. Chem. Phys., 113, 9978, 2000.
    60. 李湘, 李忠, 羅靈愛, 化工學報, 57, 258, 2006.
    61. P.A. Redhead, Vacuum 12, 203 , 1963.
    62. Lin, J.-L.; Bent, B. E. J. Phys. Chem. 96, 8529,1992.

    下載圖示 校內:立即公開
    校外:2007-07-20公開
    QR CODE