簡易檢索 / 詳目顯示

研究生: 林于玄
Lin, Yu-Hsuan
論文名稱: 應用微測壓管改良伏流水估算之水力傳導係數
Minipiezometers Application Improvements on Hydraulic Conductivity Estimation for Quantifying Hyporheic Flow
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 伏流水水力傳導係數微測壓管微水試驗影片幀數處理
外文關鍵詞: hyporheic flow, hydraulic conductivity, minipiezometers, slug test, video framing
相關次數: 點閱:129下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,伏流水層的概念受到了許多層面的關注。對於伏流水水質的調查以及水量的估算上出現許多的研究。對於伏流水層的應用性,有一部分的人將伏流水視為新水源的開發,並且能夠彌補旱季供水量不足的狀況;而另一方面則較關注伏流水層對於水文、水質上的變化,進而影響物種的棲息地與整體生態系的平衡。目前這兩方研究皆進行了諸多探討,而在伏流水量估計上卻只出現極少數的研究,對其水理條件進行估量探討。
    本研究提供了不同於過去利用Baxter et al. (2003)對水力傳導係數的估算方法,考量採樣點位空間上的差異,並結合Bouwer and Rice (1976)對於影響半徑之估算,以達到更為合理的水力傳導係數估算。然而,在現地實際採樣的操作上,以原本的測量方式無法準確的控制本研究所需求的參數數值。因此,本研究將水力傳導係數之現地測量改為錄製影片的方式,不僅可以加速採樣時間,還能夠在研究室將影片以每秒33張圖像的方式進行數據的取得,以更為精確的估量方式進行計算。不過在影片前0.35秒的水頭下降由於受到重力作用大於水頭壓力差而不可採用,對於這項結果本研究提出影片的錄製以大於1秒鐘為佳。
    對於現地採樣的人為量測誤差影響,本研究發現在量測現地水頭差的部分,對於伏流水的估量上有最大的影響趨勢。另外,本研究也提供後續在伏流水估量上的應用,並進行舉例。對於不同設計的測壓管與水井,本研究也示範了應用的方法。本研究提供了能夠在現地簡易的量測水力傳導係數的測量方式,對於伏流水的採樣以及估算上,提供了方便且經濟的採樣與計算流程,並且希望後續的研究能夠基於本篇研究的結果,更為精確的估量伏流水。

    In recent years, hyporheic zone is getting more and more attention either on the water quality investigation or the quantification for a variety of application. Some people considered hyporheic water as a new water source for our water usage which not only provides a stable and clean water resource but can be able to soothe the problem of water supply during dry season. The other people concentrated on the influence of hyporheic flux to the ecosystem. Both two approaches raise an issue of the quantification upon hyporheic flow, however, there are a few studies took efforts on quantifying the subsurface water.
    This study provides a hyporheic conductivity estimation approach different from Baxter et al. (2003) which we employed in the past to specifically connecting the geometry and approaching a more reasonable quantification. Moreover, we employed the method established by Bouwer and Rice (1976) to simulate the effective radius for specifically separated the spatial difference. The improvements of hydraulic conductivity measuring are necessary while applying our method in field survey. In addition to apply a more effective and efficient field survey process, we used video recording to improve the hydraulic conductivity measurement and analyzed the required components by divided the videos into 33 frames per seconds. Therefore, the first 0.35 seconds cannot be used in the beginning of the video because of the influence of gravity. Thus, we made a suggestion for the video should longer than one second to eliminate the gravity effect.
    For the measured errors, we also concluded that the most significant component is the head, , in the minipiezometer while measuring vertical hydraulic gradient (VHG). Moreover, we introduced some applications for further research which are going to apply the hyporheic flux quantification. Consequently, these approaches and recommendations may provide a convenient and cost-efficient way to quantify the hyporheic flux more specifically. Through the application examples, it can also be used for different design of piezometers or wells. The hydraulic conductivity of an aquifer can be calculated from the drop of water level in the minipiezometers after a slug of water is added. We expect the further researches can apply our approach to quantify the surface and subsurface interaction.

    Abstract i 摘要 iii Acknowledgements iv Table of Contents v List of Tables vii List of Figures viii Notations xii Chapter 1. Introduction 1 1.1 Motivation and Objective 1 1.2 Outline of Thesis 4 Chapter 2. Literature Review 6 2.1 Hyporheic zone 6 2.2 Investigations 8 2.3 Hyporheic flow estimation 18 2.3.1 Minipiezometers and field survey operation 18 2.3.2 Vertical Hydraulic Gradient 20 2.3.3 Hydraulic conductivity 22 Chapter 3. Theory 33 Chapter 4. Results and Discussion 37 4.1 Comparison of hydraulic conductivity estimations 37 4.1.1 Study area 37 4.1.2 Discussion of hydraulic conductivity approaches 38 4.1.3 Hydraulic conductivity estimation results 45 4.2 Operation process 51 4.3 Application 57 Chapter 5. Summary 60 5.1 Conclusion 60 5.2 Recommendation 61 References 62

    1. 林馳源. 伏流水對地表逕流水質與魚類影響之研究, 國立成功大學水利及海洋工程研究所, 碩士論文. (2013)
    2. 郭俊廷. 伏流水與環境因子對底棲型鰕虎產卵之影響─以五溝水湧泉濕地為例, 國立成功大學水利及海洋工程研究所, 碩士論文. (2015)
    3. 游志弘. 地表逕流與伏流水交換對水質特性相關性之探討, 國立成功大學水利及海洋工程研究所, 碩士論文. (2014)
    4. 葉柏緯 (2014). 伏流水對魚類棲地之影響─以五溝水湧泉濕地為例, 國立成功大學水利及海洋工程研究所, 碩士論文. (2014)
    5. 經濟部水利署南區水資源局. 「高屏溪伏流水及傍河取水先期調查試驗」, 經濟部水利署南區水資源局, pp267. (2012)
    6. Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E.. Flow and storage in groundwater systems. Science, 296(5575), 1985-1990. (2002)
    7. Anderson, M. P., & Woessner, W. W.. The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167-173. (1992)
    8. Baxter, C., Hauer, F. R., & Woessner, W. W.. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003)
    9. Bouwer, H., & Rice, R. C.. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water resources research, 12(3), 423-428. (1976)
    10. Braja, M. D. & Siva S.. Introduction to Geotochnical Engineering. pp88. (2015)
    11. Chen, X.. Streambed hydraulic conductivity for rivers in south‐central nebraska1. jawra Journal of the American Water Resources Association, 40(3), 561-573. (2004)
    12. Darcy, H.. Les fontaines publiques de la ville de Dijon. Dalmont. Paris (1856)
    13. Febria, C. M., Beddoes, P., Fulthorpe, R. R., & Williams, D. D.. Bacterial community dynamics in the hyporheic zone of an intermittent stream.The ISME journal, 6(5), 1078-1088. (2012)
    14. Findlay, S.. Importance of surface‐subsurface exchange in stream ecosystems: The hyporheic zone. Limnology and oceanography, 40(1), 159-164. (1995)
    15. Fritz, B. G., Mackley, R. D., & Arntzen, E. V.. Conducting Slug Tests in Mini‐Piezometers. Groundwater. (2015)
    16. Hartland, A., Larsen, J. R., Andersen, M. S., Baalousha, M., & O’Carroll, D.. Association of Arsenic and Phosphorus with Iron Nanoparticles between Streams and Aquifers: Implications for Arsenic Mobility.Environmental science & technology, 49(24), 14101-14109. (2015)
    17. Higashino, M.. Quantifying a significance of sediment particle size to hyporheic sedimentary oxygen demand with a permeable stream bed. Environmental fluid mechanics, 13(3), 227-241. (2013)
    18. Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day‐Lewis, F. D., & Elwaseif, M.. Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resources Research, 48(7). (2012)
    19. Ock, G., Gaeuman, D., McSloy, J., & Kondolf, G. M.. Ecological functions of restored gravel bars, the Trinity River, California. Ecological Engineering, 83, 49-60. (2015)
    20. Orghidan, T.. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(5), 392-414. (1959)
    21. Orient, J. P., Nazar, A., & Rice, R. C.. Vacuum and pressure test methods for estimating hydraulic conductivity. Groundwater Monitoring & Remediation, 7(1), 49-50. (1987)
    22. Tonina, D., & Buffington, J. M.. Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1063-1086. (2009)
    23. Tonina, D., Marzadri, A., & Bellin, A.. Benthic Uptake Rate due to Hyporheic Exchange: The Effects of Streambed Morphology for Constant and Sinusoidally Varying Nutrient Loads. Water, 7(2), 398-419. (2015)
    24. Ward, A. S., Gooseff, M. N., & Singha, K.. Imaging hyporheic zone solute transport using electrical resistivity. Hydrological Processes, 24(7), 948-953. (2010)
    25. Westhoff, M. C., Gooseff, M. N., Bogaard, T. A., & Savenije, H. H. G.. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first‐order stream. Water Resources Research,47(10). (2011)
    26. White, D. S.. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 61-69. (1993)

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE