| 研究生: |
葉玟伶 Yeh, Wen-Ling |
|---|---|
| 論文名稱: |
腸病毒71型之非結構蛋白質2C負調控宿主細胞表面第一型主要組織相容性複合物之表現 The 2C protein of enterovirus 71 down-regulates the expression of surface major histocompatibility complex class I |
| 指導教授: |
余俊強
Yu, Chun-Keung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 病毒 、人類神經細胞瘤 、淋巴球 |
| 外文關鍵詞: | well-known, neuroblastoma, SK-N-SH |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微小病毒科中,小兒麻痺病毒及克沙奇B3病毒都存在著干擾宿主免疫反應的機制: 負調控宿主表面第一型組織相容性複合物(MHC class I)的表現及其調控的細胞免疫反應。而我們的研究即是想探討腸病毒71型(EV71)是否也存在著類似的機制。我們觀察人類胚胎橫紋肌肉瘤細胞(RD)、人類結腸腺癌(Caco-2)、人類神經細胞瘤(SK-N-SH)、小鼠神經細胞瘤(Neuro-2a)、小鼠巨噬細胞(RAW264.7)在與不同劑量的EV71、不同時間共同培養後的感染狀況以及細胞表面MHC class I之表現量,結果發現,EV71感染RD、Caco-2、SK-N-SH及Neuro-2a後皆會造成MHC class I之負調控,我們更進一步發現表現VP1或2C病毒蛋白的RD細胞亦有相同結果且屬於轉譯後的機制。此外,表現2C病毒蛋白的RD細胞與空白載體及表現VP1的細胞比較後,發現其降低了活化異種淋巴球的效果。以上結果顯示,EV71感染後造成宿主細胞表面MHC class I負調控可能會減少MHC class I所媒介的細胞免疫反應,很可能是EV71逃脫細胞免疫的策略。
In this study, we sought to test whether or not enterovirus 71 (EV71) could down-regulate the expression of major histocompatibility complex class I molecule (MHC class I) of host cells, a well-known immune escape mechanism exerted by other members of the Family Picornaviridae, including poliovirus and coxsackie B3 virus. Specifically, we monitored the expression of MHC class I molecule on human rhabdomyosarcoma (RD), colorectal adenocarcinoma (Caco-2), and neuroblastoma (SK-N-SH), and mouse neuroblastoma (Neuro-2a) and monocyte (RAW264.7) by flow cytometry after incubation of the cells with EV71. Our data indicated that EV71 down-regulated MHC class I expression on the surface of RD, Caco-2, SK-N-SH and Neuro-2a cells in a post-translational mechanism. Similar results were also observed in cells transfected with the plasmids expressing either the VP1 or 2C gene of EV71. The 2C protein expressing RD cells with a reduced expression of MHC class I induced a lower proliferation of xenogenic lymphocytes than cells expressing blank plasmid or the VP1. These results illustrated that EV71-infected cells might become less sensitive to cellular immunity as a result of reduced expression of surface MHC class I. These effects may represent an important mechanism for immune evasion of EV71.
1. Lee, T.C., et al. Diseases Caused by Enterovirus 71 Infection. Pediatric Infectious Disease Journal 28, 904-910 (2009).
2. Oberste, M.S., Penaranda, S., Maher, K. & Pallansch, M.A. Complete genome sequences of all members of the species Human enterovirus A. Journal of General Virology 85, 1597-1607 (2004).
3. Harvala, H., Kalimo, H., Bergelson, J., Stanway, G. & Hyypia, T. Tissue tropism of recombinant coxsackieviruses in an adult mouse model. J Gen Virol 86, 1897-1907 (2005).
4. Chang, L.-Y. Enterovirus 71 in Taiwan. Pediatrics and Neonatology 49, 103-112 (2008).
5. Schmidt, N.J., Lennette, E.H. & Ho, H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129, 304-309 (1974).
6. Bedard, K.M. & Semler, B.L. Regulation of picornavirus gene expression. Microbes and Infection 6, 702-713 (2004).
7. McMinn, P.C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. Fems Microbiology Reviews 26, 91-107 (2002).
8. Hyypia, T., Hovi, T., Knowles, N.J. & Stanway, G. Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78 ( Pt 1), 1-11 (1997).
9. Minor, P.D. & Dunn, G. The effect of sequences in the 5' non-coding region on the replication of polioviruses in the human gut. J Gen Virol 69 ( Pt 5), 1091-1096 (1988).
10. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325 (1988).
11. Buenz, E.J. & Howe, C.L. Picornaviruses and cell death. Trends in Microbiology 14, 28-36 (2006).
12. Miao, L.Y., et al. Monoclonal antibodies to VP1 recognize a broad range of enteroviruses. J Clin Microbiol 47, 3108-3113 (2009).
13. Kuo, R.L., Kung, S.H., Hsu, Y.Y. & Liu, W.T. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83, 1367-1376 (2002).
14. Tang, W.F., et al. Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. Journal of Biological Chemistry 282, 5888-5898 (2007).
15. Sim, A.C., Luhur, A., Tan, T.M., Chow, V.T. & Poh, C.L. RNA interference against enterovirus 71 infection. Virology 341, 72-79 (2005).
16. Weng, K.F., Li, M.L., Hung, C.T. & Shih, S.R. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog 5, e1000593 (2009).
17. Lei, X., et al. The 3C Protein of Enterovirus 71 Inhibits RIG-I Mediated IRF3 Activation and Type I Interferon Responses. J Virol (2010).
18. Lin, T.Y., Twu, S.J., Ho, M.S., Chang, L.Y. & Lee, C.Y. Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis 9, 291-293 (2003).
19. Huang, C.C., et al. Neurologic complications in children with enterovirus 71 infection. N Engl J Med 341, 936-942 (1999).
20. Lin, T.Y., et al. The 1998 enterovirus 71 outbreak in Taiwan: Pathogenesis and management. Clinical Infectious Diseases 34, S52-S57 (2002).
21. Chen, C.S., et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. Journal of Virology 81, 8996-9003 (2007).
22. Ohka, S., et al. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. Journal of Virology 78, 7186-7198 (2004).
23. Ong, K.C., et al. Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol 67, 532-542 (2008).
24. Wong, K.T., et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol 67, 162-169 (2008).
25. Wen, Y.Y., Chang, T.Y., Chen, S.T., Li, C. & Liu, H.S. Comparative study of enterovirus 71 infection of human cell lines. Journal of Medical Virology 70, 109-118 (2003).
26. Wang, S.M., et al. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: Roles of cytokines and cellular immune activation in patients with pulmonary edema. Journal of Infectious Diseases 188, 564-570 (2003).
27. Wang, S.-M., Ho, T.-S., Shen, C.-F. & Liu, C.-C. Enterovirus 71, One Virus and Many Stories. Pediatrics and Neonatology 49, 113-115 (2008).
28. Wang, S.M., et al. Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis 198, 1002-1006 (2008).
29. Flutter, B. & Gao, B. MHC class I antigen presentation--recently trimmed and well presented. Cell Mol Immunol 1, 22-30 (2004).
30. Levitskaya, J., et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685-688 (1995).
31. Hill, A., et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411-415 (1995).
32. Ahn, K., et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613-621 (1997).
33. Hansen, T.H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nature Reviews Immunology 9, 503-513 (2009).
34. Choe, S.S., Dodd, D.A. & Kirkegaard, K. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337, 18-29 (2005).
35. Deitz, S.B., Dodd, D.A., Cooper, S., Parham, P. & Kirkegaard, K. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proceedings of the National Academy of Sciences of the United States of America 97, 13790-13795 (2000).
36. Cornell, C.T., Mosses, W.B., Harkins, S. & Whitton, L. Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class I. Journal of Virology 81, 6785-6797 (2007).
37. Kemball, C.C., et al. Coxsackievirus B3 Inhibits Antigen Presentation In Vivo, Exerting a Profound and Selective Effect on the MHC Class I Pathway. Plos Pathogens 5 (2009).
38. Chang, L.Y., et al. Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatric Research 60, 466-471 (2006).
39. Chen, L.C., et al. Enterovirus 71 infection induces fas ligand expression and apoptosis of Jurkat cells. Journal of Medical Virology 78, 780-786 (2006).
40. Wang, Y.F., et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. Journal of Virology 78, 7916-7924 (2004).
41. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M. & Rapoport, T.A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586 (2006).
42. Collins, R.N. How the ER stays in shape. Cell 124, 464-466 (2006).
43. Bolten, R., et al. Intracellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent In situ hybridization. J Virol 72, 8578-8585 (1998).
44. Rust, R.C., et al. Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75, 9808-9818 (2001).
45. Suhy, D.A., Giddings, T.H., Jr. & Kirkegaard, K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74, 8953-8965 (2000).
46. Lin, Y.W., Wang, S.W., Tung, Y.Y. & Chen, S.H. Enterovirus 71 Infection of Human Dendritic Cells. Experimental Biology and Medicine 234, 1166-1173 (2009).
47. Lin, Y.W., et al. Lymphocyte and Antibody Responses Reduce Enterovirus 71 Lethality in Mice by Decreasing Tissue Viral Loads. Journal of Virology 83, 6477-6483 (2009).
48. Yang, K.D., et al. Altered cellular but not humoral reactions in children with complicated enterovirus 71 infections in Taiwan. J Infect Dis 183, 850-856 (2001).