| 研究生: |
陳思妙 Chen, Szu-Miao |
|---|---|
| 論文名稱: |
探子 — 空間探索的服務設計 TANKO: A Service Design for Place Exploration |
| 指導教授: |
簡聖芬
Chien, Sheng-Fen 鄧怡莘 Deng, Yi-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 創意產業設計研究所 Institute of Creative Industries Design |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 空間資訊 、認知地圖 、服務設計 、互動 、使用者介面 |
| 外文關鍵詞: | Spatial information, Cognitive map, Service Design, Interaction, User Interface |
| 相關次數: | 點閱:125 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長久以來,人們透過各式各樣活動的進行與發生,與周遭環境頻繁互動,因此,人類對理解空間的需求,無論是在熟悉或者不曾到過的地方,都不曾改變過。但是,每個人處理空間中資訊的方式不同,所以,即使在同一空間環境中,每個人也會產生對這個空間獨特的印象與詮釋,因而形成俱有個體差異性的認知地圖。
而本研究的假設認為,即使是不同的認知地圖,也是基於某個規則或結構長出來的。因此,我們透過文獻探討,增加對空間資訊以及認知地圖的理解,並且,區別定義出空間與場所,在人與環境互動之中的差異。
接著,本研究進行了一系列包含了初探性研究、網路調查、以及焦點團體法的使用者研究。其中,從網路調查的結果當中,我們找出了一個由物件、關聯、以及屬性三大類元素組成的共通結構;同時,透過這個結構,空間資訊可以被有效地,被不同空間認知的個體所運用及分享;最後,透過焦點團體法,邀請使用者進行協同設計,從中發覺可能應用這個結構提供空間資訊服務的機會。
在獲得了實驗結果之後,我們透過建立包含三個資訊需求者和一個資訊貢獻者的人物誌、對四個人物誌使用情境的分別描述,以及他們使用探子的服務體驗過程想像,進行服務設計提案。其中,探子的服務設計概念包含六點:(1) 探子把每個人不同的對空間的理解,拿出來彼此分享。(2) 探子讓人知道空間,並且讓空間變成有意義的場所。 (3)探子希望透過提供豐富的環境資訊,讓新住民能夠更快速的融入在地生活。 (4) 探子幫助在地人對熟悉環境有了不同角度重新認識,增添生活樂趣。(5) 探子希望協助空間感不好的人,進行環境探索。(6) 在探子服務中,空間資訊是由三種元素所組成:物件、關聯、屬性。此外,我們也利用系統圖提供讀者對探子的系統運作,以及資訊架構有更整體性的了解。
在服務設計之後,我們建立系統原型,分別針對三種設備:桌上型個人電腦、行動裝置、以及資訊服務站提出互動與使用者介面設計。同時,還提出了兩個應用案例,對這個系統原型進行使用上的評估。
最後,本研究以貢獻與應用作結,說明了正因為人們對空間有不同的理解與詮釋,因而造成空間資訊的多元化與多樣性;而這樣的豐富性,是可以透過有結構地組織與應用,達到提供更好的空間資訊服務目的。
The need of people to understanding environments remains no change since thousand years ago, yet it is still hard to be satisfied due to the differences of human cognitive maps. However, though cognitive maps vary by individuals, there must have something in common.
To discover the varieties of cognitive maps of individuals, the understanding of spatial information and the distinction between space and place are needed. Through reviewing literatures of spatial information, spatial knowledge, cognitive maps, and the definition of spaces and places, the fundamental understanding of how people learn about an environment could be gained.
Based on existing knowledge, a series of surveys and experiments are conducted. To find out what actually be used to form spatial cognitive maps, and to know how those spatial “elements” be structured differently, we applied a pilot study, a web survey, and two focus groups. From the survey and experiments, we found a way of structuring information of a place, which mainly contains three kinds of elements: objects, relations, and attributes, and through which spatial information can be easily shared among individuals.
According to previous researches, a prototype of spatial information system was built for the campus: TANKO. The design concepts of TANKO are (1) TANKO provides chances for everyone to share his environmental understandings with others. (2) TANKO lets users know a space and make the space become a meaningful place. (3) Through providing new arrivals rich contents of spatial information, TANKO helps them to better integrate into local life. (4) TANKO provides chances for local residents to explore familiar places from different perspectives, and therefore to increase the pleasure of living. (5) TANKO assists people with bad sense of directions to explore the environments. And (6) the spatial information in TANKO is composed of three kinds of elements: Objects, Relations, and Attributes. The details of service design including system information architecture, four personas including three spatial information requestors and one contributors, four user journeys and scenarios illustrations based on built personas, and three devices as touch points are all explained. Besides, by using a system map, a whole picture of how TANKO works behind the screen is also presented.
After service design, the interaction and user interface design of three kinds of technology devices, PC, mobile devices, and kiosks, are presented to explain how the system interacts with users. We describe in detail about user actions by also providing screenshots of prototyping. In addition, to evaluate the prototype design of TANKO, two more cases are also given.
Lastly, while going through the whole design process, we made a conclusion and believe that, the diversity of how people recognize and define things in a space makes spatial information complex yet interesting. And it is worthy of taking advantage of the difference to make the spatial information provision more humane.
Brugnoli, G. (2009). Connecting the Dots of User Experience. JOURNAL OF INFORMATION ARCHITECTURE, 1(1), 6-15
Chang, Y. L. (2003). Spatial cognition in digital cities. International Journal of architectural computing, 1(4), 471-488.
Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: proposed strategies for navigational aiding. Presence: Teleoperators and Virtual Environments, 8(6), 671-685.
Darken, R. P., & Sibert, J. L. (1993, December). A toolset for navigation in virtual environments. In Proceedings of the 6th annual ACM symposium on User interface software and technology (pp. 157-165). ACM.
Dijksterhuis, A., & Nordgren, L. F. (2006). A theory of unconscious thought. Perspectives on Psychological science, 1(2), 95-109.
Haken, H., & Portugali, J. (1996). Synergetics, inter-representation networks and cognitive maps. In The construction of cognitive maps (pp. 45-67). Springer Netherlands.
Hara, K., Le, V., & Froehlich, J. (2013, April). Combining crowdsourcing and google street view to identify street-level accessibility problems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 631-640). ACM.
Herman, J. F., Kail, R. V., & Siegel, A. W. (1979). Cognitive maps of a college campus: A new look at freshman orientation. Bulletin of the Psychonomic Society, 13(3), 183-186.
Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory& Cognition, 13(3), 208-217.
Kosslyn, S. M., Heldmeyer, K. H., & Locklear, E. P. (1977). Children's drawings as data about internal representations. Journal of Experimental Child Psychology, 23(2), 191-211.
Kosslyn, S. M. (1978). Measuring the visual angle of the mind's eye. Cognitive Psychology, 10(3), 356-389.
Krieg-Brückner, B., Röfer, T., Carmesin, H. O., & Müller, R. (1998, January). A taxonomy of spatial knowledge for navigation and its application to the Bremen autonomous wheelchair. In Spatial Cognition (pp. 373-397). Springer Berlin Heidelberg.
Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction research. Context and consciousness: Activity theory and human-computer interaction, 17-44.
Lynch, K. (1960). The image of the city, Cambridge: MIT.
McCall R. & Benyon, D. (1999). ENISpace: Evaluating navigation in information space. In P. de Bra & J. Leggett (Eds.) Proceedings of WEBNET’99, VA: AACE, pp. 1344-1345.
McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 211.
Morelli, N. (2006). New Representation Techniques For Designing In A Systemic Perspective. In DS 38: Proceedings of E&DPE 2006, the 8th International Conference on Engineering and Product Design Education, Salzburg, Austria, 7-8.09. 2006.
Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding?. Cognitive psychology, 5(2), 176-206.
Rosenbaum, S. (April 2013). Welcome To The Era Of Information Under-Load. Forbes.com, Retrieved Aug 27, 2014 from http://www.forbes.com/sites/stevenrosenbaum/2013/07/23/welcome-to-the-era-of-information-under-load/
Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive psychology, 10(4), 422-437.
The Population Division of the UN Department of Economic and Social Affairs. (10 July, 2014). More than half of world's population now living in urban areas, UN survey finds. UN News Centre, Retrieved Aug 24, 2014 from http://www.un.org/apps/news/story.asp?NewsID=48240 - .U_mEzkuVPKk
Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4), pp. 189-208, 1948
Tversky, B. (1993) Cognitive maps, cognitive collages and spatial mental models. In Proceedings of European Conference COSIT’93, Spatial Information Theory--A Theoretical Basis for GIS, Lecture Notes in Computer Science, pp. 14-24. Berlin: Springer-Verlag.