| 研究生: |
陳詩芸 Chen, Shih-Yun |
|---|---|
| 論文名稱: |
添加物對單晶粒釤鋇銅氧超導體微結構及釘扎特性研究 Study of the Microstructure and Pinning Properties of Single Grain Sm-Ba-Cu-O superconductors |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 釤鋇銅氧超導體 、釘扎 |
| 外文關鍵詞: | Sm-Ba-Cu-O superconductor, pinning |
| 相關次數: | 點閱:107 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
RE-Ba-Cu-O(RE=Sm,Nd..)高溫超導體因其特殊的peak effect效應,隨著外加磁場增加、呈現出較YBCO材料較佳的臨界電流密度(Jc),對於許多高磁場下的應用有著極大的發展潛力。
由於超導塊材所能擄獲的磁場強度正比於其Jc性質,而Jc性質與樣品中的釘扎中心種類及數量有關。因此在提升Jc的同時,瞭解釘扎機制與微結構間的關連性是相當重要的。
本實驗室目前已能利用MgO單晶為晶種,以冷接種方式進行熔融製程,成長直徑約2公分的Sm-Ba-Cu-O單晶粒超導塊材。為進一步提升Sm-Ba-Cu-O單晶粒超導塊材之超導性能,以提高其應用性,採用不同的方式以增加樣品中的有效釘扎中心數量:1. 於起始粉末中添加不同種類的添加物,包含m等級的Pd、Pt、CeO2;2. 奈米等級的Y2O3、Al2O3、SiO2、及利用溶膠-凝膠法合成之Sm2BaCuO5(Sm211)及Nd4Ba2Cu2O10(Nd422)相之奈米粉體;此外,為提高起始成分中的Ba/Cu比,以Sm210相取代起使粉末中的Sm211相。希望經由以上不同的添加方式,改變樣品中非超導相(Sm2BaCuO5)顆粒粒徑大小,並引入奈米級釘扎中心,以期對Jc性質有正面的助益,並由微觀結構分析討論可能的釘扎作用機制。
在添加m等級添加物方面的結果顯示,除Pd外,Pt及CeO2均可有效細化樣品中211顆粒,而使其Jc提高。但Pd會使211顆粒形狀轉變為矩形,而在211曲率較大處產生較高密度之缺陷。同時添加兩種不同添加物(Pd/Pt、Pd/CeO2、Pt/CeO2)可進一步細化211顆粒,增加有效釘扎中心數目,而進一步提高SmBCO (Sm-Ba-Cu-O)樣品之Jc。
在添加奈米級添加物方面,根據其與基地相的反應可分為三類:1. 不產生反應,維持顆粒狀,如Y2O3;2. 與基地相反應生成成分差異區,如Sm211及Nd422;3. 與基地相作用,導致樣品超導性質變差,如Al2O3及SiO2。
而奈米級Sm211的添加則在基地相中產生微小的成分差異區,此區域是於包晶反應過程中形成,並成為 pinning center,而使樣品於高磁場下之Jc提高,同時釘扎機制轉變為normal pinning 與 pinning同時作用。而添加奈米級Nd422的機制與奈米級Sm211相同,且因晶格扭曲的作用,對Jc的提升作用更加明顯。
在起始粉末的成分方面,將起始成分中之Sm211換為Sm210,確實可抑制Sm-Ba的固溶度,使樣品的Tc獲得改善。本研究同時在Sm210系統中添加Pd、Pt、Pd/Pt、Pt/CeO2等m等級添加物,以進一步提升其超導性質。結果與Sm211系統相同,均可經由細化211顆粒使樣品的超導性質改善。但在Sm210系統中添加奈米級Sm211的結果則不同於Sm211系統。
在釘扎機制分析結果方面,添加m等級添加物的樣品主要釘扎機制與未添加樣品相同,仍為由晶格缺陷及非超導相界所提供之normal pinning。而添加奈米級顆粒以及使用210為起使粉末的樣品則為 pinning,此部分樣品於高磁場下所提升的Jc特別明顯。
最後,本研究以R-T方式檢驗樣品於不同磁場下之電阻變化,發現釘扎機制為 pinning center的樣品,包含Sm210、添加奈米級Sm211以及添加奈米級Nd422之樣品中確實存在有另一較弱之超導相,而釘扎機制為normal pinning 的樣品,包含標準樣品(Sm123+Sm211,未添加)及添加Pt/CeO2之樣品則只有一個主要的超導相。此外,樣品中非超導相與超導相間的差異性及作用的磁場範圍會影響到樣品之Jc-H表現。
目前結果顯示,於Sm210系統中同時添加奈米級Sm211及Pt/CeO2可得到極佳之Jc (77K, 0T時為3.6104A/cm2;2T時為1.8104A/cm2),此結果為目前SmBCO系統之最高值。
Abstract
REBCO high temperature superconductors have significant potential for high field engineering applications due to their inherent peak effect which exhibit high Jc values in a high magnetic field.
The magnitude of trapped field within bulk superconductors is proportional to the critical current density. In addition, Jc is related to both the type and number of pinning centers in the superconductor. Therefore, the key to enhancing Jc is an understanding of the relation between the pinning mechanism and microstructure.
In this study, bulk SmBCO was melt-processed in air using the cold seeding technique with MgO single crystal as the seed. In order to increase the number of pinning centers, m-sized additives, ex. Pd、Pt、CeO2, and nm-sized Y2O3、Al2O3、SiO2、Sm2BaCuO5 (“Sm211”) and Nd4Ba2Cu2O (“Nd422”) were used. Also, Sm210 was used to increase the Ba/Cu ratio of the precursor powders.
The results show that except for the Pd-doped samples, Jc of SmBCO with m-sized additives was enhanced by refining the 211-particles. Notably, for the Pd-doped samples, the shape of the 211-particles changed to rectangular, and thus induced a higher density of defects in the 123/211 interface. It was also found that Jc could be further enhanced by the combined addition of two types of additives.
As for the nm-sized additions, it was shown that the reactions between different nano-scale additives and the matrix can be classified into three types: one dose not react with the Sm123 (Sm1Ba2Cu3Oy) matrix (e.g. Y2O3), one becomes a compositional fluctuation region (e.g. Sm211 and Y2O3), and the other reacts with the matrix, which results in the suppression of superconductivity (e.g. Al2O3 and SiO2).
As for the effect of Sm210 addition, the results indicate that the substitution of Sm-Ba was suppressed and thus Tc was enhanced. In order to further enhance Jc for samples with Sm210 addition, different types of additives were also used. The results for the m-sized additives were similar to the Sm211 samples, in which 211-particles were refined. But the effect of nm-sized additives on Jc in the Sm210 and Sm211 samples was different.
In this study, scaling analysis found that the pinning mechanism for samples with m-sized additives were similar to the un-doped samples, in which defects and 123/211 interfaces contributed to pinning. As for samples with nm-sized addition, in which Jc is superior in high field regions, the dominant pinning becomes a combination of pinning and normal pinning.
Finally, the current transport behavior for samples with different pinning mechanisms was examined. The poorer superconducting phase was found in samples with pinning centers, ex. Sm210, nm211 doped samples. As for the control and Pt/CeO2 doped samples, there was only one type of superconducting phase. In addition, it was also found that the difference between the main superconducting phase and the poorer superconducting phase results in various Jc-H behaviors.
Notably, the Jc value for samples with Sm210/Pt/CeO2/nmSm211 addition was 3.6104 A/cm2 at 77K at 0T, and 1.8104 A/cm2 at 77K at 2T. The above results were the highest values for SmBCO samples grown in air.
參 考 文 獻
1. M. Tomita, M. Murakami, “High – temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K” Nature Vol.42, Jan 30 (2003) 517-520
2. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, “Superconductivity at 93K in a New Mixed-phase Y-Ba-Cu-O Compound System at Ambient Pressure” Phys. Rev. Lett. 58 (1987) 908.
3. Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu, “Superconductivity at 39K in magnesium diboride” Nature 410, (2001) 63-64.
4. Katsuya Shimizu, Hiroto Ishikawa, Daigoroh Takao, Takehiro Yagi and kiichi Amaya. “Superconductivity in compressed lithium at 20 K” Nature 419, (2002) 597 - 599.
5. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials”, World Scientific, (1992).
6. M. Tinkham, “Introduction to Superconductivity”, McGraw-Hill, Inc. 1996
7. C. P. Bean, “Magnetization of High-Field Superconductors” Rev. Mod. Phys. 36 (1964) 31
8. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fastnacht and H.D. Keith, “High critical currents in Y-Ba-Cu-O superconductors” Appl. Phys.Lett. 52 (1988) 2074
9. 陳引幹 ”超導塊狀材料及其應用”, 金重勳編, 磁性技術手冊第三十章,中華民國磁性技術協會出版,民國九十一年七月。
10. K. Salama, B. Selvamanickam, L. Gao and K. Sun, “High current density in bulk YBa2Cu3Ox superconductor” Appl. Phys. Lett., 54 (1989) 2352.
11. H. Hojaji, K.A. Michael, A. Barkatt, A.N. Thorpe, F.W. Matthew, I.G. Talmy, D.A. Haught and S. Alterescu, “A comparative study of sintered and melt-grown recrystalized YBa2Cu3Ox” J. Mater. Res., 4 (1989) 28.
12. C. Varanasi and P.J. McGinn, “Effect of YBa2Cu3O7-x grain size on the nucleation of Y2BaCuO5 during melt texturing” Mater. Lett., 17 (1993) 205.
13. M. Murakami, M. Morita, K. Doi, and M. Miyamoto, “A New Process with the Promise of High Jc in Oxide Superconductors” Jpn. J. Appl. Phys. Part 2 28 (1989) 1189.
14. H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka and S. Tanaka, Advances in Superconductivity Ⅱ(1990) 285.
15. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, “The properties of YBCO superconductors prepared by a new approach: the powder melting process” Supercond. Sci. Technol. 3 (1990) 490.
16. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, “High Jc YBCO superconductors Prepared by the “Powder Melting Process”” IEEE Trans. Mag. 27 (1991) 912.
17. M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, “Quench and Melt Growth (QMG) Process for Large Bulk Superconductor Fabrication“ Adv. Supercond., 3 (1991) 733.
18. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, “High Magnetic Flux Trapping by Melt-Grown YBaCuO Superconductors” Jpn. J. Appl. Phys., 30 (1991) L1157.
19. X. Chaud, D. Isfort, E. Beaugnon and R. tournier, “Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm”. Physica C 341-348, (2000) 2413-2416.
20. T. Izumi and Y. Shiohara, “Growth mechanism of YBa2Cu3Oy superconductors prepared by the horizontal Bridgeman method”, J. Mat. Res. 7 (1992) 16
21. Y. Shiohara, A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials”. Materials Science and Engineering, R19, No1-2 (1997) 1-81.
22. M. Murakami, Melt Processed High-Temperature Superconductors, World Scientific, 1992.
23. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7-” Nature 329 (1987) 423.
24. Y. Shiohara, A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials”. Materials Science and Engineering, R19, No1-2 (1997) 1-81.
25. JCPDS-ICDD, PDF-number: 82-2302
26. JCPDS-ICDD, PDF-number:82-0472.
27. T. Hatano, A. Matsushita, K. Nakamura, Y. Sakka, T. Matsumoto and K. Ogawa, “Superconducting and Transport Properties of B-Y-Cu-O Compounds-Orthorhombic and Tetragonal phases” Jpn. J. Appl. Phys., 26 (1987) L721.
28. T. B. Lindemer, J. F. Hunley, J. E. Gates, Jr. A L. Sutton, J. Brynestad, C. R. Hubbard and P. K. Gallagher, “Experimental and thermodynamic study of nonstoichiometry in YBa2Cu3O7-x” J. Am. Ceram. Soc., 72 (1989) 1775
29. B.J. Lee and D.N. Lee, “THERMODYNAMIC EVALUATION FOR THE Y2O3-bao-cuox system” J. Am. Ceram. Soc., 74 (1991) 78.
30. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7-” Nature 329 (1987) 423.
31. M. Sano, Y. Hayakawa and M. Kumagawa, “The effect of the substitution of Sm for Ba on the superconductor SmBa2Cu3Oy” Supercond. Sci. Technol., 9 (1996) 478-482.
32. M. Kambara, T. Umeda, M. Tagami, X. Yao, E. A. Goodlin and Y. Shiohara, “Construction of the Quasi-ternary PhaseDdiagram in the NdO1.5BaO-CuOx system in an air atmosphere. Pt.1. equilibrium tie lines in the Nd1+xBa2-xCu3O6+delta solid solution and liquid region” J. Am. Ceram. Soc., 81 (1998) 2116
33. E. Goodlin, M. Kambara, T. Umeda and Y. Shiohara, “Solubility of neodymium in cooper-rich oxide melts in air and growth of Nd1+xBa2-xCu3Oz solid solution single crystal” Physica C 289 (1997) 37-50
34. M. Kuznetsov, C. Krauns, Y. Nakamura, T. Izumi and Y. Shiohara, “Ternary phase diagram of SmO1.5-BaO-CuOy system for melt processing” Physica C 357-360 (2001) 1068-1072.
35. M. Murakami, N. Hayashi, N. Sakai, S. Ozawa, N. Chikumoto, “Melt Processed of LRE-Ba-Cu-O Superconductors” Advances in Superconductivity IX Vol. 2 (1997), Springer-Verlag, Tokyo, 663-668
36. N. Chikumoto, J. Yoshioka, M. Otsuka, N. Hayashi and M. Murakami, “Effect of high-temperature heat-treatment on the pinning properties of melt-textured Nd123” Physica C 281 (1997) 253-259
37. A. Hu, X. Obradors, V. Gomis, T. Puig, A. Carrillo, E. Cardellach, E. Mendoza, Z. X. Zhao, and J. W. Xiong, “Fabrication of melt-textured Nd123 superconductors with Nd2BaO4 addition” Applied Supercond. Vol. 6 (1998) 129-137
38. H. Fujimoto, C. Cai and E. Ohtabara, “Sm-Ba-Cu-O bulk superconductors melt-processed in air” Physica C 372-376 (2002) 1111-1114.
39. Shu-Hau Hsu, In-Gann Chen and Maw-Kuen Wu, “Preparation of c-oriented Nd-Ba-Cu-O/Ag melt-growth sample in air” Supercond. Sci. Technol. 15 (2002) 653-659.
40. Y.A. Jee, G.W. Hong, C.J. Kim and T.H. Sung, “Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y” Supercond. Sci. Technol. 11 (1998) 650-658.
41. S.I. Yoo, N. Sakai, H. Kojo, S. Takebayashi, N. Hayashi, M. Takahashi, K. Sawada, T. Higuchi and M. Murakami, “Progress in melt processing of Nd-Ba-Cu-O superconductors” IEEE Transaction on Applied Superconductivity, vol.7 No.2 June 1997.
42. C. Cai, K. Tachibana and H. Fujimoti, “Study of single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag by using Nd123/MgO thin film as seed” Supercond. Sci. Technol. 13 (2000) 698-702.
43. C. Cai and H. Fujimoto, “Effects of Nd123/MgO thin film and MgO single-crystal seeds in isothermal solidification of YBaCuO/Ag” J. Mater. Res., Vol. 15, No. 8, Aug (2000).
44. C. Cai, H. Mori, H. Fujimoto, H. Liu, S. Dou, “Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process” Physica C 357-360 (2001) 734-737.
45. C. Cai and H. Fujimoto, “Stable production of large single-domain Y1.8Ba2.4Cu3.4Oy/Ag by isothermal solidification” Physica C 357-360 (2001) 709-712.
46. H. Fujimoto, H. Ozaku, E. Ohtabara, “Sm-Ba-Cu-O bulk superconductors melt processed in air using Nd123/MgO thin film cold seeding” Physica C 386 (2003) 198-201.
47. C. Cai and H. Fujimoto, “Stable production of large single-domain Y1.8Ba2.4Cu3.4Oy/Ag by isothermal solidification” Physica C 357-360 (2001) 709-712.
48. M. Kambara, Y. Watanabe, K. Miyake, A. Endo, K. Murata, Y. Shiohara, and T. Umeda, “Effect of initial composition on distribution of RE211 (422) particles in RE123 superconductors” J. Mater. Res. 12 (1997) 2873
49. W. Bieger, G. Krabbes, P. Schatzle, L. Zelenina, U. Wiesner, P. Verges, J. Klosowski, “The influence of initial composition and oxygen partial pressure on the properties of melt-textured NdBaCuO” Physica C 257 (1996) 46-52
50. A. Hu, X. Obradors, V. Gomis, T. Puig, A. Carrillo, E. Cardellach, E. Mendoza, Z. X. Zhao and J. W. Xiong, “Fabrication of Melt-Textured Nd123 Superconductors with Nd2BaO4 Addition” Appl. Supercond. 6 (1998) 129
51. T. Puig, B. Martinez, R. Yu, A. Hu, V. Gomis, F. Sandiumenge, and X. Obradors, “Critical currents in Air Processed NdBa2Cu3O7 Melt-Textured Superconductors” Appl. Supercond. 6 (1998) 119
52. X. Yao, M. Kambara, T. Umeda and Y. Shiohara, “95 K NdBCO Single Crystal Grown in Air by Controlling Liquid Composition” Jpn. J. Appl. Phys. Part 2 36 (1997) 400
53. M. Murakami, Melt Processed High-Temperature Superconductors, World Scientific, 1992.
54. J. Karpinski, E. Kaldis, E. Jilek, S. Rusiecki and B. Bucher, “Bulk synthesis of the 81-K superconductor YBa2Cu4O8 at high oxygen pressure” Nature 336, (1988) 660
55. R. Ramesh, S. Jin, S. Nakahara and T. H. Tiefel, “Phase decomposition and structural defects in a Y-Ba-Cu-O superconductor” Appl. Phys. Lett. 57, 1458 (1990)
56. C. J. Kim, Y.A. Jee, S. C. Kwon, T. H. Sing and G. W. Hong. “Control of YBCO growth at the compact/substrate interface by bottom seeding and Yb2O3 coating in seeded melt-growth processed YBCO oxides using a MgO substrate” Physica C 315 (1999) 263-270.
57. J. Mannhart, D. Anselmetti, J. G. Bednorz, Ch. Gerber, K. A. Muller and D. G. Schlom, Proc. 6th Int. Workshop on Critical Currents in High-Tc Supercond., Cambridge, UK (1991) 5242
58. M. Murakami, “Key issues for the characterization of RE-Ba-Cu-O systems (RE:Nd, Sm, Eu, Gd)” Applied Superconductivity Vol.6, No.2-5 (1998) 51-59.
59. T. Wu, T. Egi, R. Itti, K. Kuroda and N. Koshizuka, Advances in Superconductivity VIII (1996) 481
60. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, and F. Holtzberg, “Vortex confinement by columnar defects in YBa2Cu3O7 crystals: Enhanced pinning at high fields and temperatures” Phys. Rev. Lett., 67 (1991) 648
61. I. G. Chen, J. Liu, R. Weinstein, R. Shaw, Advances in Superconductivity IX, Editors, S. Nakajima, M. Murakami, (Springer-Verlag Tokyo) (1997) 657
62. R. Weinstein, R. P. Sawh, D. Parks, M. Murakami, T. Mochida, N. Chikumoto, G. Krabbes, and W. Bieger, “Very high values of Jc obtained in NdBa2Cu3Ox by use of the U/n process” Physica C 383 (2002) 214-222
63. V. Selvamanickam, M. Mironova, and K. Salama, “Enhancement of critical current density in YBa2Cu3Ox superconductor by mechanical deformation” J. Mater. Res. Vol. 8 (2) (1993) 249
64. M. Mironova, V. Selvamanickam, D. F. Lee, and K. Salama, “TEM studies of dislocations in deformed melt-textured YBa2Cu3Ox superconductors, “ J. Mater. Res. Vol. 8 (11) (1993) 2767
65. P. Yang and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities” Science 273 p1836 (1996)
66. Z. L. Wang, A. Goyal, and D. M. Kroeger, “Structural and chemical disorder near the Y2BaCuO5/YBa2Cu3O7- interface and its possible relation to the flux-pinning behavior in melt-textured YBa2Cu3O7-” Physical Review B Vol. 47, 5373-5382 (1993)
67. M. Mironova, D. F. Lee and K. Salama, “TEM and critical current density studies of melt-textured YBa2Cu3Ox with silver and Y2BaCuO5 additions” Physica C 211 p188 (1993)
68. S. Pinol, F. Sandiumenge, B. Martinze, V. Gomis, J. Fontcuberta, and X. Obradors, “Enhanced critical currents by CeO2 additions in directionally solidified YBa2Cu3O7” Appl. Phys. Lett. 65(1994) 1448
69. C-J. Kim, K-B. Kim, D-Y. Won, H-C. Moon, D-S. Suhr, S. H. Lai, and P. J. McGinn, “Formation of BaCeO3 and its influence on microstructure of sintered/melt-textured Y-Ba-Cu-O oxides with CeO2 addition” J. Mater. Res. 9 (1994) 1952
70. P. J. Mcginn, T. Meugnan, S. Yeung and A. Banerjee, “Improved Flux Pinning in Melt Textured YBa2Cu3O7- Through Chemical Additions” Applied Superconducitivity Vol. 4, Nos 10-11, pp. 563-575 (1996)
71. G. Karabbes, G. Fuchs, P. Schatzle, S. Grub. J. W. Park, F. Hardinghaus, G. Stover, R. Hayn, S. -L. Drechsler, T. Fahr, “Zn doping of YBa2Cu3O7 in melt textured materials: peak effect and high trapped fields” Physica C 330 (2000) 181-190
72. G. K. Bichile, D. G. Kuberkar, Smita Deshmukh, R. G. Kulkarni, M. A. Abdeigadir and P. Boolchand, “Enhanced flux pinning by Zn substitution in YBa2Cu3O7- ” Supercond. Sci. Technol. 4 (1991) 57-61
73. M. Hussain, S. Kuroda and K. Takita, “Peak effect observed in Zn doped YBCO single crystals” Physica C 297 (1998) 176-184
74. G. Kozlowski and T. Svobodny, “Stability of growing front of YBa2Cu3Ox superconductor in the presence of Pt and CeO2 additions” Appl. Phys. Lett. 67 (1995) 288
75. N. Sakai, S. I. Yoo and M. Murakami, “Control of Y2BaCuO5 size and morphology in melt-processed YBa2Cu3O7- superconductor” J. Mater. Res., Vol.10, No.7, Jul (1995)
76. N. Ogawa, I. Hirabayashi and S. Tanaka, “Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method” Physica C 177 (1991) 101.
77. M. Matsui, N. Sakai, S. Sakai, S. J. Seo, and M. Murakami, “Effects of Pt and CeO2 addition on the growth of Nd4Ba2Cu2O10 particles” Supercond. Sci. Technol. 13 (2000) 660
78. M. Muralidhar, M. R. Koblischka, and M. Murakami, “(Nd, Eu, Gd)-Ba-Cu-O superconductors with combined addition of CeO2 and Pt” Supercond. Sci. Technol. 13 (2000) 693
79. L. Zhou, S. K. Chen, K. G.. Wang, X. Z. Wu, P. X. Zhang and Y. Feng, “Synthesis of ultrafine Y2BaCuO5 powder and its incorporation into YBCO bulk by powder melting process” Physica C 363 (2001) 99-106.
80. J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A. D. Caplin, L. F. Cohen, J. L. MacManus Driscoll, L. D. Cooley, X. Song, and D. C. Larbalestier, “High critical current density and improved irreversibility field in bulk MgB2 made by a scaleable, nanoparticle addition route” Appl. Phys. Lett. 81 (2002) 2026
81. K. Christova, A. Manov, J. Nyhus, U. Thisted, O. Herstad, S. E. Foss, K. N. Haugen, K. Fossheim, “Bi2Sr2CaCu2Ox bulk superconductor with MgO particles embedded” J. Alloys and Comp. 340 (2002) 1-5
82. L. Hua, J. Yoo, J. H. Kim, H. Chung, and G. Qiao, “Microstructure and phase evolution of ultrafine MgO doped Bi-2223/Ag tapes” Physica C 291 (1997) 149-154
83. M. Muralidhar, M. Jirsa, N. Sakai, and M. Murakami, “Progress in melt-processed (Nd-Sm-Gd)Ba2Cu3Oy superconductors” Supercond. Sci. Technol. 16 (2003) R1-R16
84. M. Muralidhar, N. Sakai, M. Nishiyama, M. Jirsa, T. Machi, and M. Murakami, “Pinning characteristics in chemically modified (Nd, Eu, Gd)-Ba-Cu-O superconductors” Appl. Phys. Lett. Vol. 82 (2003) 943
85. M. Muralidhar and M. Murakami, “Effect of Eu2BaCuO5 addition on the matrix composition and flux pinning in (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy superconductors” Supercond. Sci. Technol. 13 (2003) 1587
86. A. Das, M. R. Koblischka, N. Sakai, M. Muralidhar, S. Koishikawa, T. Fukuzaki, S. J. Seo, and M. Murakami, “Magnetic and magnetic-optic characterization of the ternary compounds (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy, (Sm0.33Eu0.33Gd0.33)Ba2Cu3Oy and (Nd0.33Sm0.33Gd0.33)Ba2Cu3Oy” Supercond. Sci. Technol. 11 (1998) 1283
87. A. Das, M. Muralidhar, M. R. Koblischka, and M. Murakami, “Magneto-optic and magnetic properties of (Nd0.33Eu0.33Gd0.33)1-xYxBa2Cu3Oy superconductors” Physica C 338 (2000) 284-290
88. W. A. Fietz and W. W. Webb, “Hysteresis in Superconducting Alloys—Temperature and Field Dependence of Dislocation Pinning in Niobium Alloys” Phys. Rev.,178 (1969) 657
89. D. Dew-Hughes, “Flux pinning mechanisms in type II superconductors” Philos. Mag. 30, (1974) 293.
90. R. P. Huebener, “Magnetic Flux Structures in Superconductors” Springer-Verlag Berlin Heidelberg New York (1979)
91. H. Yamasaki, K. Endo, S. Kosaka, M. Umoda, S. Yoshida, and K. Kajimura, “Scaling of the flux pinning force in epitaxial Bi2Sr2Ca2Cu3Ox thin films” Phys. Rev. Lett. 70, (1993) 3331
92. L. Klein, E. R. Yacoby, Y. Yeshurn, A. Erb, G. Muller-Vogt, V. Breit, and H. Wuhl, “Peak effect and scaling of irreversible properties in untwined Y-Ba-Cu-O crystals” Phys. Rev. B. 49 (1994) 4403
93. T. Izumi, Y. Nakamura, and Y. Shiohara, “Crystal growth mechanism of YBa2Cu3Oy Superconductors with Peritectic reaction” J. Cryst. Growth 128 (1993) 757-761
94. JCPDS-ICDD, PDF-number:45-0415
95. JCPDS-ICDD, PDF-number:77-1724.
96. JCPDS-ICDD, PDF-number:82-2321.
97. A. Endo, H.S. Chauhan, Y. Nakamura, Y. Shiohara, “Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7-x “ J. Mater. Res., Vol. 11, No. 5, May (1996) 1114-1119.
98. M. Mironova, D.F. Lee, K. Salama, “TEM and critical current density studies of melt-textured YBa2Cu3Ox with silver and Y2BaCuO5 addition” Physica C 211 (1993) 188-204.
99. Z. L. Wang, A. Goyal, and D. M. Kroeger, “Structural and chemical disorder near the Y2BaCuO5/YBa2Cu3O7- interface and its possible relation to the flux-pinning behavior in melt-textured YBa2Cu3O7-” Physical Review B Vol. 47, 5373-5382 (1993)
100. N. Ogawa, I. Hirabayashi and S. Tanaka, “Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method” Physica C 177 (1991) 101.
101. N. Vilata, F. Sandiumenge, S. Pinol, and X. Obradors. “Precipitate size refinement by CeO2 and Y2BaCuO5 additions in directionally solidified YBa2Cu3O7 “ J. Mater. Res. 12 p38 (1997)
102. T. H. Tiefel, S. Jin, G. W. Kammlott, J. T. Plewes and R. A. Fastnacht, “Recovery of High-Tc Superconductivity in Y-Ba-Cu-O Doped with Reacting Metals” Physica C 166 (1990) 408-412
103. V. Selvamanickam, M. Mironova, and K. Salama, “Enhancement of critical current density in YBa2Cu3Ox superconductor by mechanical deformation, “ J. Mater. Res. Vol. 8 (2) (1993) 249
104. M. Mironova, V. Selvamanickam, D. F. Lee, and K. Salama, “TEM studies of dislocations in deformed melt-textured YBa2Cu3Ox superconductors” J. Mater. Res. Vol. 8 (11) (1993) 2767
105. T. Puig, J. Plain, F. Sandiumenge, and X. Obradors, “High oxygen pressure generation of flux-pinning centers in melt-textured YBa2Cu3O7” Appl. Phys. Lett. 75 (13) (1999) 1952
106. B. Martinez, F. Sandiumenge, T. Puig, and X. Obradors, “Enhanced critical currents in melt textured YBa2Cu3O7 by cold isostatic pressing” Appl. Phys. Lett. 74 (1) (1999) 73
107. M. Yoshizumi, Y. Nakamura, T. Izumi, Y. Shiohara, Y. Ikuhara, and T. Sakuma, “Phase separation of Nd1+xBa2−xCu3O6+δ during annealing processing” Physica C 357-360 (2001) 354-358
108. M. Nakamura, Y. Yamada, T. Hirayama, Y. Ikuhara, Y. Shiohara, and S. Tanaka, “Heat treatment and anomalous peak effect in Jc H curve at 77 K for NdBa2Cu3O7−δ single-crystal superconductor” Physica C 259 (1996) 295-303
109. S. H. Hsu, I. G. Chen and M. K. Wu, “Preparation of the c-oriented Nd–Ba–Cu–O/Ag melt-growth sample in air” Supercond. Sci. Technol. 15 (2002) 653-659.
110. I. G. Chen and H. J. Liu, “The effect of Nd2BaO4 addition on the melt-textured Nd-Ba-Cu-O superconductor” Supercond. Sci. Technol. 13 (2000) 665
111. A. Hu, X. Obradors, V. Gomis, T. Puig, A. Carrillo. E. Cardellach, E. Mendoza, Z. X. Zhao, and J. W. Xiong, “Fabrication of Melt-Textured Nd123 Superconductors with Nd2BaO4 Addition” Appl. Superconductiviyu Vol. 6 (1998) 129
112. W. Bieger, G. Krabbes, P. Schatzle, L. Zelenina, U. Wiesner, P. Verges, J. Klosowski, “The influence of initial composition and oxygen partial pressure on the properties of melt-textured NdBaCuO” Physica C 257 (1996) 46-52
113. I. G. Chen, F. C. Chang, and M. K. Wu, “Enhancement of the superconducting properties of air-processed melt-growth Sm-Ba-Cu-O with the addition of Sm2BaO4” Supercond. Sci. Technol. 15 (2002) 717
114. S. Y. Chen, I. G. Chen, and M. K. Wu, “Pinning Mechanism of the High Critical Current Density Sm-Ba-Cu-O superconductors with Sm210/Pd/Pt/CeO2 Addition”, IEEE Transaction on Applied Superconductivity, Vol. 13 (2003) 3087
115. T. Mochida, N. Chikumoto, and M. Murakami, “Flux pinning by Nd4Ba2Cu2O10 inclusions in NdBa2Cu3O7– superconductors: A combined effect of point, interface, and pinning at elevated temperatures” Physical Review B, Vol. 62 (2000) 1350
116. M. R. Koblischka, A. J. J. Van Dalen, T. Higuchi, S. I. Yoo, and M. Murakami, “Analysis of pinning in NdBa2Cu3O7- superconductors” Physical Review B, Vol. 58 (1998) 2863
117. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors” Rev. Mod. Phys. 66 (1994) 1125
118. R. Griessen, H. H. Wen, A. J. J. van Dalen, B. Dam, J. Rector, H. G. Schnack, S. Libbrecht, E. Osquifuil, and Y. Bruynseraede, “Evidence for Mean Free Path Fluctuation Induced Pinning in YBa2Cu3O7 and YBa2Cu4O8 Films” Phys. Rev. Lett. 72 (1994) 1910
119. M. R. Koblischka, “Pinning forces and scaling in high-Tc superconductors” Physica C 282-287 (1997) 2193-2194
120. M. R. Koblischka and M. Murakami, “Pinning mechanisms in bulk high-Tc superconductors” Supercond. Sci. Technol. 13 (2000) 738-744
121. M. Mironova, D. F. Lee and K. Salama, “TEM and critical current density studies of melt-textured YBa2Cu3Ox with silver and YBa2CuO5 additions” Physica C 211 p188 (1993)
122. S. Y. Chen, I. G. Chen, C. P. Liu, P. C. Hsieh, and M. K. Wu, “The Relationship between Nano-scale Sm211/Sm123 Interfaces and Superconductivity of Sm-Ba-Cu-O Materials”, IEEE Transaction on Applied Superconductivity, Vol. 13 (2003) 3180
123. M. R. Koblischka, M. Muralidhar, and M. Murakami, “Flux pinning in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors” Appl. Phys. Lett. Vol. 73 (1998) 2351
124. M. R. Koblischka and M. Murakami, “Pinning mechanisms in bulk high-Tc superconductors” Supercond. Sci. Technol. 13 (2000) 738-744
125. S. Y. Chen, P. C. Hsieh, I. G. Chen, M. K. Wu, “Effect of Nano-sized Sm2BaCuO5 Particles Addition on the Pinning Mechanism of Sm-Ba-Cu-O Materials”, accepted for publication in Journal of Materials Research.(2003,11)
126. A. Hu, M. Murakami, and H. Zhou, “Ordering oscillation of local composition in melt-processed REBa2Cu3O7- superconductors (RE: Sm, Eu, Gd)” Appl. Phys. Lett. Vol. 83 (2003) 1788
127. A. Hu, H. Zhou, N. Chikumoto, N. Sakai, M. Murakami, and I. Hirabayashi, “Peak effect with tilted fields in melt-processed (Sm, Eu, Gd)Ba2Cu3O7- superconductors” submitted for publication on Supercond. Sci. Technol. (2003)