| 研究生: |
吳明治 Wu, Ming-Chih |
|---|---|
| 論文名稱: |
脈衝雷射輔助奈米壓印之分子動力學分析 Pulsed laser-assisted nanoimprint with molecular dynamics analysis |
| 指導教授: |
林震銘
Lin, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 分子動力學 、雷射輔助奈米壓印 |
| 外文關鍵詞: | molecular dynamics, laser-assisted nanoimprint |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是藉由分子動力學理論來模擬鎳基材在雷射輔助奈米壓印加工過程中,加工參數對壓印行為的影響,所壓印過程中探討的製程參數是分別為雷射能量密度、雷射脈衝時間寬度及模具壓印速度。模具採用可透光不吸收光之鑽石模具,模具尺寸為1.05nm×0.7nm×1.05nm;工件所採用的材料為鎳,尺寸為1.76nm×0.7nm×3.52nm,當雷射作用在工件時會使工件原子產生動能,並以遞減的方式往工件內部減小。本研究主要在於了解雷射輔助奈米壓印技術的基本原理與機制,同時希望經由理論分析與模擬找出雷射輔助奈米壓印技術的基礎理論模型與重要製程參數,以及這些參數對奈米結構之材料性質的影響,作為實際雷射製程技術改良與發展的依據。經由模擬結果發現:(1)當壓印深度相同,雷射能量越高,會使模具壓印所需的力量減小,而工件之平均應力也會隨著雷射能量越高而越小,與巨觀下材料變形之溫度效應相同;(2)在脈衝時間越長時,模具壓印所需的力量也會相對減小,這代表脈衝時間越長工件吸收雷射能量越久,使工件產生變形所需之力量也就越小;(3)在相同雷射能量下,當模具壓印速度越快,要使工件產生變形就必須施加更大的力量才可讓工件產生變形,而工件之平均應力也會隨著模具壓印速度越快而增加,這與巨觀下材料變形之應變率效應相同。
The objective of this thesis is to study the laser-assisted nanoimprint on nickel substrate with various laser energy densities, laser pulsed duration and mold imprint speeds by molecular dynamics theory. The diamond mold material was used to transmit the laser light. The workpiece material is nickel with a size of 1.76nm×0.7nm×3.52nm. The main task of the thesis is to investigate the basic principle and mechanism of the laser-assisted nanoimprint technology, and find out the elementary parameters in the laser-assisted nanoimprint technology. These parameters will be evaluated by numerical approach. In the numerical simulations, it can be found: (1) the mold loading will decrease while the laser energy increasing, the stress of workpiece also decreases while laser energy increasing, (2) the mold loading will decrease while the laser pulsed duration time increasing. (3) when the mold imprint speed is increased, the mold loading will increase to make the workpiece deform.
[1] 葉瑞銘, 奈米科技導論, 高立出版, 2004.
[2] 張立德、牟季美, 奈米材料和奈米結構, 滄海書局, 2002.
[3] Delerue C., Lannoo M., “Nanostructures :theory and modeling,” 2004
[4] Cao G., “Nanostructures & nanomaterials :synthesis, properties & applications,” 2004.
[5] Klein M.V., “Optics”, Wiley, New York, 1970.
[6] http://nano-taiwan.sinica.edu.tw/2003NanoConferences.asp
[7] Chou S. Y., Krauss P. R., and Renstrom P. J., “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett., Vol. 67, No. 21, pp.3114-3116, 20 November, 1995.
[8] Chou S. Y., Krauss P. R., and Renstrom P. J., “Nanoimprint lithography”, J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp.4129-4133, 1996.
[9] Chou S. Y., Keimel C., Gu J., “Ultrafast and direct imprint of nanostructures in silicon”, Nature, Vol. 417, p.835-837, 2002.
[10] 吳昌崙, 張景學, 半導體製程技術, 新文京開發, 2003.
[11] Chou S. Y., Kraus P. R., Renstrom P. J., “Imprint lithography with 25-nanometer resolution”, Science, Vol. 272, pp. 85-87, 1996.
[12] Guo L., Krauss P. R., Chou S. Y., “Nanoscale silicon field effect transistors fabricated suing imprinting lithography”, Appl. Phys. Lett., Vol. 71, pp. 1881-1883, 1997.
[13] Austin M. D., Chou S. Y., “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Appl. Phys. Lett., Vol 81, pp. 4431-4433, 2002.
[14] Zhang W., Chou S. Y., “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels”, Appl. Phys. Lett., Vol. 83, pp. 1632-1634, 2003.
[15] Bender M., Otto M., Hadam B., “Fabrication of nanostructures using a UV-based imprint technique”, Microelectronic Engineering, Vol. 53, pp. 233-236, 2000.
[16] Otto M., Bender M., Hadam B., “Characterization and application of a UV-based imprint technique”, Microelectronic Engineering, Vol. 57-58, pp. 361-366, 2001.
[17] Wu W., Gu J., Ge H., Keimel C., Chou S. Y., “Room-temperature Si single-electron memory fabricated by nanoimprint lithography”, Appl. Phys. Lett., Vol. 83, pp. 2268-2270, 2003.
[18] Rogers J. A., Mirkin C., “Emerging methods for micro- and nanofabrication”, Mater. Res. Bull, Vol 26, 2001.
[19] Chou S. Y., Krauss P. R., Renstrom P. J., “Imprint lithography with 25-nanometer resolution”, Science, Vol 272, p.85–87, 1996.
[20] Kotake S., Kuroki M., “Molecular dynamics study of solid melting and vaporization by laser irradiation”, International Journal of Heat and Mass Transfer, Vol. 36, pp. 2061-2067, 1993.
[21] Ohmura E., Fukumoto I., “Molecular dynamics simulation on laser ablation of fcc metal”, Int. J. Japan Soc. Prec. Eng., Vol.30, No.2, pp. 128-133, 1996.
[22] Ohmura E., Fukumoto I., Miyamoto I., “Scattering of particles ablated by ultrashort-pulse Laser”, Proc. ICALEO 2001.
[23] Wang X. and Xu X., “Molecular dynamics simulation of heat transfer and phase change during laser material interaction”, Journal of Heat Transfer, Vol.124, pp.265-274, 2002.
[24] Wang X. and Xu X., “Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction”, International Journal of Heat and Mass Transfer, Vol.46, pp.45-53, 2003.
[25] 林青楠,分子動力學研究銅薄膜之準分子雷射燒蝕,國立成功大學 機械工程學系 碩士論文,台灣,民國九十二年.
[26] Fang T. H., Weng C. I., Chang J. G., “Molecular dynamics analysis of temperature effects on nanoindentation measurement”, Materials Science and Engineering A, Vol. 357, pp.7-12, 2003.
[27] Hsu Q. C., Wu C. D., Fang T. H., “Deformation mechanism and punch taper effects on nanoimprint process by molecular dynamics”, Japanese journal of applied physics, Vol. 43, pp. 7665-7669, 2004.
[28] Ye Y. Y., Biswas R., Morris J. R., “Molecular dynamics simulation of nanoscale machining of copper”, Nanotechnology, Vol. 14, pp. 390-396, 2003.
[29] Xu Z. H., Rowcliffe D., “Nanoindentation on diamond-like carbon and alumina coatings”, Surface and Coatings Technology, Vol. 161, pp. 44-51, 2002.
[30] Komanduri R., Chandrasekaran N. , Raff L. M., “M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting”, Wear, Vol. 242, pp. 60-88, 2000.
[31] Birkhoff G. D., “Proof of a recurrence theorem for strongly transitive systems”, Proc. Nat. Sci., Vol. 17, pp.650, 1931.
[32] Robert P. C., Casella G., “Monte Carlo statistical methods”, New York, Springer, 2004.
[33] Irving J. H., Kirkwood J. G., “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics”, Journal of chemical physics, Vol. 18, pp. 817-829, 1950.
[34] Haile J. M., “Molecular Dynamics Simulation: Elementary methods”, John Wiley & Sons, New York, 1992.
[35] 李政道編著,統計力學,凡異出版社,1985年。
[36] Meyer , Madeleine et al., “Computer simulation in materials science: interatomic potentials, simulation techniques, and applications”, Dordrecht ; Kluwer Academic Publishers, Boston, 1991.
[37] Huyskens, P. L., “Intermolecular forces: an introduction to modern methods and results”, Berlin; Springer-Verlag, 1991.
[38] Smith R. et al., “Atomic and ion collisions in solids and at surface: theory, simulation and applications”, New York: Cambridge University Press, 1997.
[39] Heermann D. W., “Computer simulation methods in theoretical physics”, Berlin, New York: Springer-Verlag, 1990.
[40] Rapaport D. C., “The art of molecular dynamics simulation, Cambridge”, U.K.: Cambridge University Press, 2004.
[41] Nedialkov N. N., Atanasov P. A., “Dymamics of the ejected material in ultra-short laser ablation of metals”, Applied Physics A: Materials Science and Processing, Vol. 79, p 1121-1125, 2004.
[42] Nedialkov, N. N., Imamova S. E., “Ablation of metals by ultrashort laser pulses”, Journal of Physics D: Applied Physics, Vol. 37, pp. 638-643, 2004.
[43] Imamova S. E., Atanasov P. A., “Molecular dynamics simulation using pair and many body interatomic potentials: ultrashort laser ablation of Fe”, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 227, pp. 490-498, 2005.
[44] Iwaki T., “Molecular dynamics study on stress-strain in very thin film”, JSME International Journal, Series A, Vol. 39, pp.346-353, 1996.
[45] Miyazaki N., Shiozaki Y., “Caluation of Mechanical Properties of Solids Using Molecular Dynamics Method”, JSME, Series A, Vol. 39, pp. 606-612, 1996.
[46] Frenkel D., Smit B., “Understanding Molecular Simulation”, Academic Press, San Diego, 1996.
[47] 張振燦,雷射加工,亞太圖書出版社,1985年。
[48] 丁勝懋,雷射工程導論(第四版),中央圖書出版社,1994年。
[49] 劉國雄等,工程材料科學,全華圖書公司,1991年。
[50] Bauerle D., “Laser processing and chemistry: Recent developments”, Applied surface science, Vol. 186, pp. 1-6, 2002.
[51] Wakabayashi, H., Shimazu Y., “Numerical simulation on melting behavior of an atomic layer irradiated by thermal radiation”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 59, pp. 171-178, 1993.
[52] Kotake S., Wakuri S., Molecular dynamics study of heat conduct in solid materials, JSME Int. J. Series B, Vol. 37, pp. 103-108, 1994.
[53] Incropera F. P., DeWitt D. P., “Fundamentals of heat and mass transfer”, New York, Wiley, 2002.
[54] 黃逸萍,黃小萍合著,Fortran 95/90程式設計,五南圖書出版公司,2004年。
[55] Hsu Q. C., Wu C. D., Fang T. H., “Deformation mechanism and punch taper effects on nanoimprint process by molecular dynamics”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 43, pp. 7665-7669, 2004.
[56] Kalpakjian S., Schmid S. R., “Manufacturing processes for engineering materials”, Menlo Park, Calif. :Addison-Wesley, 4th ed, 1997
[57] Gale W. F., Totemeier T. C., “Smithells metals reference book”, Amsterdam, Elsevier Butterworth-Heinemann, 2004.