簡易檢索 / 詳目顯示

研究生: 崔林濤
Csui, Lin-Tao
論文名稱: 以自然語言處理於遠距創客活動的討論紀錄之分析與探討
Using Natural Language Processing for Analyzing Discussion-Record in Remote Maker Activities
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 創客教育動手做自然語言處理討論分析
外文關鍵詞: Maker Education, Hands-on Learning, Natural Language Processing, Discourse Analysis
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來創客教育風靡全球,許多教育工作者都致力於創客教育的研究以提升學習者的未來競爭力,因此如何有效量測學習者的學習表現成為教育研究中一項重要的研究課題;過往的研究指出,學習者在課程中的討論表現與其學習效果有一定的關聯;而在創客教育中常使用學習成績、自我報告等方式來衡量學習者的學習成果,可能會因為學習者的個人主觀意識影響導致量測結果出現偏差,並且無法了解學習者在參與創客活動中討論的主題,而採用觀察法需耗費大量的人力與時間成本。近年來隨著科技的快速發展讓使用學習者的討論數據進行學習者學習成果的量測成為可能。故本研究提出一個使用自然語言處理技術於學習者討論討論記錄分析之方法,本方法使用語音轉文字技術將音檔轉譯為文本檔案以代替傳統逐字稿手續,並透過自然語言處理技術分析討論文本,用以有效識別學習者討論主題,並以此為依據判斷學習者在創客活動中的學習表現。
    受新冠肺炎影響本研究以Micro:bit作為創客動手做活動教材,以此設計遠距創客活動,以期探討系統是否適用於遠距創客活動中的討論分析;研究結果顯示學習者的討論和學習成效、參與度與團隊協作有顯著關聯;另一方面,本研究利用創客動手做活動之實作成績及學習單成績作為衡量學習成就之因子,探討討論內容對學習成就的影響,發現在創客動手做活動中,學習者越多地進行針對程式撰寫的討論,其學習成就越高,這也說明了學習者更積極地進行與課程相關的討論會獲得更好的學習表現。。因此,基於本研究的方法可以有效地分析學習者的討論,同時可以透過討論衡量學習者的學習成就。

    Influenced by the teaching concept of learning by doing, maker education, which is based on hands-on learning, has gradually been promoted. Countries around the world are actively promoting maker education and related policies to cultivate learners' creativity and innovation ability. However, previous studies have used scales, questionnaires or self-reports to analysis learning performance. This may lead to deviations in the measurement results due to the influence of the learner's personal subjective consciousness. In recent years, with the rapid development of science and computer’s technology, it is possible to use learners' discussion data to measure learners' learning outcomes. This study proposes a method of using natural language processing technology to analyze the discussion records of learners. This method uses speech-to-text technology to translate audio files into text files instead of traditional verbatim procedures, and analyzes the discussion text through natural language processing ,which is used to effectively identify the topics discussed by learners, and based on this to judge the learning performance of learners in maker activities.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 壹、 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的與問題 4 貳、 文獻探討 6 2.1 創客教育 6 2.2 團隊合作 7 2.3 討論的學習活動 9 2.4 討論分析 10 2.5 自然語言處理(Natural Language Processing) 11 2.5.1 自然語言處理的應用 12 2.6 文本主題建模 13 參、 研究方法 15 3.1 實驗對象 15 3.2 實驗設計 15 3.3 遠距課程環境 19 3.3.1 Google Meet 20 3.3.2 Google Classroom 20 3.4 系統設計 22 3.4.1 系統架構 22 3.4.2 語音轉文字辨識(Speech-to-Text Recognition) 22 3.4.3 文本預處理 25 3.4.4 主题分析 27 3.5 量測工具 28 3.5.1 參與度量表(Engagement v.s. Disaffection with Learning) 28 3.5.2 團隊協作量表(Collective agency scale) 29 3.5.3 創客自我效能量表(Maker Self-Efficacy scale) 29 3.6 資料處理及分析 29 肆、 研究結果 31 4.1 文字雲 31 4.2 LDA主題分析結果 32 4.3 討論類別定義 33 4.4 問卷之信度分析(Reliability Analysis) 34 4.4.1 參與度之信度分析 34 4.4.2 團隊協作量表之信度分析 34 4.4.3 創客自我效能量表之信度分析 35 4.5 學習成就與討論內容的分析結果 35 4.6 學習參與度與討論內容的分析結果 36 4.7 團隊協作與討論內容的分析結果 37 4.8 創客自我效能與討論內容的分析結果 38 伍、 討論 39 陸、 結論 41 6.1 研究結論 41 6.2 研究限制 41 6.3 未來建議 42 參考文獻 43 附錄 52 附錄一、參與度量表 52 附錄二、團隊協作量表 54 附錄三、創客自我效能量表 55

    行政院(民104年)。毛揆:凝聚創客力量 發揮創新創意 型塑Maker新世代。取自:https://www.ey.gov.tw/Page/9277F759E41CCD91/76077e5e-1d39-4008-bf92-d5dbe04fac2f
    Akçapınar, G. (2015). How automated feedback through text mining changes plagiaristic behavior in online assignments. Computers & Education, 87, 123-130.
    Almaiah, M. A., Al-Khasawneh, A., & Althunibat, A. (2020). Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Education and Information Technologies, 25, 5261-5280.
    Amer, T. (2007). E-learning and Education. Cairo: Dar Alshehab publication.
    Bailey, H. (2022). OBS. Retrieved from https://obsproject.com/
    Birgin, O., & Acar, H. (2020). The effect of computer-supported collaborative learning using GeoGebra software on 11th grade students’ mathematics achievement in exponential and logarithmic functions. International Journal of Mathematical Education in Science and Technology, 1-18.
    Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
    Blikstein, P. (2018). Maker movement in education: History and prospects. Handbook of Technology Education, 419-437.
    Bower, M., & Hedberg, J. G. (2010). A quantitative multimodal discourse analysis of teaching and learning in a web-conferencing environment–the efficacy of student-centred learning designs. Computers & Education, 54(2), 462-478.
    Bowler, L. (2014). Creativity through" maker" experiences and design thinking in the education of librarians. Knowledge Quest, 42(5), 58.
    Bowler, L., & Champagne, R. (2016). Mindful makers: Question prompts to help guide young peoples' critical technical practices in maker spaces in libraries, museums, and community-based youth organizations. Library & Information Science Research, 38(2), 117-124.
    Cain, R., & Lee, V. R. (2020). Measuring Electrodermal Activity in an Afterschool Maker Program to Detect Youth Engagement. In Cognitive and Affective Perspectives on Immersive Technology in Education (pp. 128-150): IGI Global.
    Chen, B. (2014). Visualizing semantic space of online discourse: The Knowledge Forum case. Paper presented at the Proceedings of the Fourth International Conference on Learning Analytics And Knowledge.
    Chen, C.-M., Li, M.-C., Chang, W.-C., & Chen, X.-X. (2021). Developing a Topic Analysis Instant Feedback System to facilitate asynchronous online discussion effectiveness. Computers & Education, 163, 104095.
    Chen, C.-M., & Tsao, H.-W. (2021). An instant perspective comparison system to facilitate learners’ discussion effectiveness in an online discussion process. Computers & Education, 164, 104037.
    Chen, M.-H., Huang, C.-C., Huang, S.-T., Chang, J. S., & Liou, H.-C. (2013). An automatic reference aid for improving EFL learners' formulaic expressions in productive language use. IEEE transactions on learning technologies, 7(1), 57-68.
    Chien, Y.-C., Liu, M.-C., & Wu, T.-T. (2020). Discussion-record-based prediction model for creativity education using clustering methods. Thinking Skills and Creativity, 36, 100650.
    Chien, Y.-H., Lin, K.-Y., Hsiao, H.-S., Chang, Y.-S., & Chan, S.-C. (2021). Measuring industrial design self-efficacy and anxiety. International Journal of Technology and Design Education, 1-20.
    Chou, P.-N. (2018). Skill development and knowledge acquisition cultivated by maker education: Evidence from Arduino-based educational robotics. EURASIA Journal of Mathematics, Science and Technology Education, 14(10), em1600.
    Chung, C. K., & Pennebaker, J. W. (2013). Using computerized text analysis to track social processes. Handbook of language and social psychology. New York: Oxford, 12.
    Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., & Zhou, M. (2017). Superagent: A customer service chatbot for e-commerce websites. Paper presented at the Proceedings of ACL 2017, System Demonstrations.
    Dang, J., King, K. M., & Inzlicht, M. (2020). Why are self-report and behavioral measures weakly correlated? Trends in cognitive sciences, 24(4), 267-269.
    Dascalu, M.-D., Ruseti, S., Dascalu, M., McNamara, D. S., Carabas, M., Rebedea, T., & Trausan-Matu, S. (2021). Before and during COVID-19: A Cohesion Network Analysis of students’ online participation in moodle courses. Computers in Human Behavior, 121, 106780.
    Davidson, A.-L., Romero, M., & Quintana, T. (2022). Macro-dissemination of maker culture: fostering 21st century competencies through an Ideaton.
    Dewey, J. (1903). Democracy in education. The elementary school teacher, 4(4), 193-204.
    Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5-22.
    Dillenbourg, P. (1999). What do you mean by collaborative learning? In: Oxford: Elsevier.
    Dyment, J., & Downing, J. (2018). “There was nowhere to hide…”: the surprising discovery of how weekly web conferences facilitated engagement for online initial teacher education students. Asia-Pacific Journal of Teacher Education, 46(4), 399-418.
    Erkens, M., Bodemer, D., & Hoppe, H. U. (2016). Improving collaborative learning in the classroom: Text mining based grouping and representing. International Journal of Computer-Supported Collaborative Learning, 11(4), 387-415.
    Ezen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015). Unsupervised modeling for understanding MOOC discussion forums: a learning analytics approach. Paper presented at the Proceedings of the fifth international conference on learning analytics and knowledge.
    Farr, F., & Riordan, E. (2015). Tracing the reflective practices of student teachers in online modes. ReCALL, 27(1), 104-123.
    Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational psychologist, 48(1), 56-66.
    Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-text and speech-to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401-408.
    Geng, S., Niu, B., Feng, Y., & Huang, M. (2020). Understanding the focal points and sentiment of learners in MOOC reviews: A machine learning and SC‐LIWC‐based approach. British Journal of Educational Technology, 51(5), 1785-1803.
    Gokhale, A., & Machina, K. (2018). Guided online group discussion enhances student critical thinking skills. International Journal on E-Learning, 17(2), 157-173.
    Güçler, B. (2013). Examining the discourse on the limit concept in a beginning-level calculus classroom. Educational Studies in Mathematics, 82(3), 439-453.
    Häkkinen, P. (2013). Multiphase method for analysing online discussions. Journal of Computer Assisted Learning, 29(6), 547-555.
    Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495-504.
    Han, F., & Ellis, R. (2020). Combining self-reported and observational measures to assess university student academic performance in blended course designs. Australasian Journal of Educational Technology, 36(6), 1-14.
    Harris, Z. S. (1981). Discourse analysis. In Papers on syntax (pp. 107-142): Springer.
    Heo, H., Bonk, C. J., & Doo, M. Y. (2021). Enhancing learning engagement during COVID‐19 pandemic: Self‐efficacy in time management, technology use, and online learning environments. Journal of Computer Assisted Learning.
    House, W. (2014). FACT SHEET: President Obama to host first-ever White House Maker Faire. Retrieved on August, 23, 2014.
    Howe, C. (2009). Peer groups and children's development (Vol. 14): John Wiley & Sons.
    Hsu, Y.-C., Baldwin, S., & Ching, Y.-H. (2017). Learning through making and maker education. TechTrends, 61(6), 589-594.
    Hu, Y.-H. (2021). Effects of the COVID-19 pandemic on the online learning behaviors of university students in Taiwan. Education and Information Technologies, 1-23.
    Huang, T.-C., Lin, W., & Yueh, H.-P. (2019). How to cultivate an environmentally responsible maker? A CPS approach to a comprehensive maker education model. International Journal of Science and Mathematics Education, 17(1), 49-64.
    Hübscher, R. (2010). Assigning students to groups using general and context-specific criteria. IEEE transactions on learning technologies, 3(3), 178-189.
    Hwang, W.-Y., Li, Y.-H., & Shadiev, R. (2018). Exploring effects of discussion on visual attention, learning performance, and perceptions of students learning with STR-support. Computers & Education, 116, 225-236.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211.
    Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research: Interaction Book Company.
    Kafai, Y., Fields, D., & Searle, K. (2014). Electronic textiles as disruptive designs: Supporting and challenging maker activities in schools. Harvard Educational Review, 84(4), 532-556.
    Kim, S.-s. (2019). The Effect of Maker Class Emphasizing Small Group Discussion and Debate on Elementary School Students' Science Learning Motivation and Scientific Attitude. Journal of the Korean society of earth science education, 12(1), 54-63.
    Knight, S., & Littleton, K. (2015). Discourse-centric learning analytics: mapping the terrain. Journal of Learning Analytics, 2(1), 185-209.
    Kollöffel, B., & de Jong, T. (2013). Conceptual understanding of electrical circuits in secondary vocational engineering education: Combining traditional instruction with inquiry learning in a virtual lab. Journal of engineering education, 102(3), 375-393.
    Laal, M., Laal, M., & Kermanshahi, Z. K. (2012). 21st century learning; learning in collaboration. Procedia-Social and Behavioral Sciences, 47, 1696-1701.
    Leszczyński, P., Charuta, A., Łaziuk, B., Gałązkowski, R., Wejnarski, A., Roszak, M., & Kołodziejczak, B. (2018). Multimedia and interactivity in distance learning of resuscitation guidelines: a randomised controlled trial. Interactive learning environments, 26(2), 151-162.
    Lim, J., & Richardson, J. C. (2016). Exploring the effects of students' social networking experience on social presence and perceptions of using SNSs for educational purposes. The Internet and Higher Education, 29, 31-39.
    Litts, B. K., Kafai, Y. B., Lui, D. A., Walker, J. T., & Widman, S. A. (2017). Stitching codeable circuits: High school students’ learning about circuitry and coding with electronic textiles. Journal of Science Education and Technology, 26(5), 494-507.
    Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), 4.
    Mercer, N. (2007). Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. Journal of Applied Linguistics and Professional Practice, 1(2), 137-168.
    Mercer, N., & Littleton, K. (2007). Dialogue and the development of children's thinking: A sociocultural approach: Routledge.
    Microsoft. (2022a). Make it: code it. Retrieved from https://microbit.org/projects/make-it-code-it/
    Microsoft. (2022b). Makecode. Retrieved from https://makecode.microbit.org/
    Molinillo, S., Aguilar-Illescas, R., Anaya-Sánchez, R., & Vallespín-Arán, M. (2018). Exploring the impacts of interactions, social presence and emotional engagement on active collaborative learning in a social web-based environment. Computers & Education, 123, 41-52.
    Munir, M. T., Baroutian, S., Young, B. R., & Carter, S. (2018). Flipped classroom with cooperative learning as a cornerstone. Education for Chemical Engineers, 23, 25-33.
    Nam, C. W. (2014). The effects of trust and constructive controversy on student achievement and attitude in online cooperative learning environments. Computers in Human Behavior, 37, 237-248.
    Namaziandost, E., Neisi, L., Kheryadi, & Nasri, M. (2019). Enhancing oral proficiency through cooperative learning among intermediate EFL learners: English learning motivation in focus. Cogent Education, 6(1), 1683933.
    Next Generation Science Standards: For States, By States. (2013). Washington, DC: The National Academies Press.
    Noroozi, O., Weinberger, A., Biemans, H. J., Mulder, M., & Chizari, M. (2013). Facilitating argumentative knowledge construction through a transactive discussion script in CSCL. Computers & Education, 61, 59-76.
    Oecd. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. In: OECD Publishing Paris.
    Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604-624.
    Pattanpichet, F. (2011). The effects of using collaborative learning to enhance students English speaking achievement. Journal of College Teaching & Learning (TLC), 8(11), 1-10.
    Pekruna, R. (2020). Commentary: Self-Report Is Indispensable to Assess Students' Learning. Frontline Learning Research, 8(3), 185-193.
    Peng, X., & Xu, Q. (2020). Investigating learners' behaviors and discourse content in MOOC course reviews. Computers & Education, 143, 103673.
    Peppler, K., & Bender, S. (2013). Maker movement spreads innovation one project at a time. Phi Delta Kappan, 95(3), 22-27.
    Putwain, D. W., Symes, W., Nicholson, L. J., & Becker, S. (2018). Achievement goals, behavioural engagement, and mathematics achievement: A mediational analysis. Learning and Individual Differences, 68, 12-19.
    Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A., & Yousufi, S. Q. (2021). Factors affecting students’ learning performance through collaborative learning and engagement. Interactive learning environments, 1-21.
    Rathakrishnan, M., Ahmad, R., & Suan, C. L. (2017). Online discussion: Enhancing students’ critical thinking skills. Paper presented at the AIP Conference Proceedings.
    Rico-Juan, J. R., Gallego, A.-J., & Calvo-Zaragoza, J. (2019). Automatic detection of inconsistencies between numerical scores and textual feedback in peer-assessment processes with machine learning. Computers & Education, 140, 103609.
    Riikonen, S., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2020). Bringing maker practices to school: Tracing discursive and materially mediated aspects of student teams’ collaborative making processes. International Journal of Computer-Supported Collaborative Learning, 15(3), 319-349.
    Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. Paper presented at the Computer supported collaborative learning.
    Sang, W., & Simpson, A. (2019). The maker movement: A global movement for educational change. International Journal of Science and Mathematics Education, 17(1), 65-83.
    Sarrouti, M., & El Alaoui, S. O. (2020). SemBioNLQA: a semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions. Artificial intelligence in medicine, 102, 101767.
    Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. Cambridge handbook of the learning sciences, 2, 397-417.
    Schön, S., Ebner, M., & Kumar, S. (2014). The Maker Movement. Implications of new digital gadgets, fabrication tools and spaces for creative learning and teaching. eLearning papers, 39, 14-25.
    Shan, J., & Wang, W. (2021). Making and sharing in asynchronous discussion: exploring the collaboration process in online maker community. Interactive learning environments, 1-15.
    Sharples, M., Taylor, J., & Vavoula, G. (2010). A theory of learning for the mobile age. In Medienbildung in neuen Kulturräumen (pp. 87-99): Springer.
    Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., & Owens, T. (2014). Learning in the making: A comparative case study of three makerspaces. Harvard Educational Review, 84(4), 505-531.
    Shimazoe, J., & Aldrich, H. (2010). Group work can be gratifying: Understanding & overcoming resistance to cooperative learning. College teaching, 58(2), 52-57.
    Shu, Y., & Huang, T.-C. (2021). Identifying the potential roles of virtual reality and STEM in Maker education. The Journal of Educational Research, 114(2), 108-118.
    Skinner, E., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology, 100(4), 765.
    Smedley, J. (2010). Modelling the impact of knowledge management using technology. OR insight, 23(4), 233-250.
    Smith, D. G. (1977). College classroom interactions and critical thinking. Journal of Educational Psychology, 69(2), 180.
    Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instructional Science, 40(2), 297-323.
    Sullivan, F. R., & Keith, P. K. (2019). Exploring the potential of natural language processing to support microgenetic analysis of collaborative learning discussions. British Journal of Educational Technology, 50(6), 3047-3063.
    Taylor, B. (2016). Evaluating the benefit of the maker movement in K-12 STEM education. Electronic International Journal of Education, Arts, and Science (EIJEAS), 2.
    Tofel-Grehl, C., Fields, D., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, C. (2017). Electrifying engagement in middle school science class: Improving student interest through e-textiles. Journal of Science Education and Technology, 26(4), 406-417.
    Tran, V. D., Nguyen, T. M. L., Van De, N., Soryaly, C., & Doan, M. N. (2019). Does Cooperative Learning May Enhance the Use of Students' Learning Strategies? International Journal of Higher Education, 8(4), 79-88.
    Unterfrauner, E., Voigt, C., & Hofer, M. (2021). The effect of maker and entrepreneurial education on self-efficacy and creativity. Entrepreneurship Education, 4(4), 403-424.
    Vähäsantanen, K., Paloniemi, S., Räikkönen, E., & Hökkä, P. (2020). Professional agency in a university context: Academic freedom and fetters. Teaching and Teacher Education, 89, 103000.
    Veerman, A. L. (2000). Computer-supported collaborative learning through argumentation.
    Wahyuni, S., & Febianti, K. (2019). The use of WhatsApp group discussion to improve students’ writing achievement. Indonesian Educational Administration and Leadership Journal, 1(1), 45-51.
    Wang, S.-L., & Hwang, G.-J. (2012). The role of collective efficacy, cognitive quality, and task cohesion in computer-supported collaborative learning (CSCL). Computers & Education, 58(2), 679-687.
    Wang, Z., Pan, X., Miller, K. F., & Cortina, K. S. (2014). Automatic classification of activities in classroom discourse. Computers & Education, 78, 115-123.
    Weaver, W. (1952). Translation. Paper presented at the Proceedings of the Conference on Mechanical Translation.
    Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71-95.
    Wentzel, K. R., & Watkins, D. E. (2002). Peer relationships and collaborative learning as contexts for academic enablers. School Psychology Review, 31(3), 366-377.
    Westera, W., Dascalu, M., Kurvers, H., Ruseti, S., & Trausan-Matu, S. (2018). Automated essay scoring in applied games: Reducing the teacher bandwidth problem in online training. Computers & Education, 123, 212-224.
    Wikipedia. (2018). Maker culture. Retrieved from https://en.wikipedia.org/wiki/Maker_culture
    Wise, A. F., & Cui, Y. (2018). Learning communities in the crowd: Characteristics of content related interactions and social relationships in MOOC discussion forums. Computers & Education, 122, 221-242.
    Wu, S.-Y., & Wang, S.-M. (2020). Exploring the effects of gender grouping and the cognitive processing patterns of a Facebook-based online collaborative learning activity. Interactive learning environments, 1-15.
    Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access, 8, 23522-23530.
    Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. ieee Computational intelligenCe magazine, 13(3), 55-75.
    Zhang, M., Quan, Y., Huang, L., & Kuo, Y.-L. (2017). The Impact of Learning Styles on Academic Achievement. International Journal of Intelligent Technologies & Applied Statistics, 10(3).
    Zhang, S., Chen, H., Wen, Y., Deng, L., Cai, Z., & Sun, M. (2021). Exploring the influence of interactive network and collective knowledge construction mode on students’ perceived collective agency. Computers & Education, 104240.
    Zhang, S., Wen, Y., & Liu, Q. (2019). Exploring student teachers’ social knowledge construction behaviors and collective agency in an online collaborative learning environment. Interactive learning environments, 1-13.

    下載圖示 校內:2025-02-08公開
    校外:2025-02-08公開
    QR CODE