| 研究生: |
張肇宸 Chang, Chou-Chen |
|---|---|
| 論文名稱: |
探討登革蛋白酶NS2B3切割先天免疫傳訊蛋白TMEM173的調控因子 The factors regulating dengue protease-mediated cleavage of innate immune adaptor TMEM173 |
| 指導教授: |
賴明詔
Lai, Michael M.C. 余佳益 Yu, Chia-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 登革病毒蛋白酶NS2B3 、TMEM173 、單核苷酸多態性 |
| 外文關鍵詞: | Dengue protease NS2B3, TMEM173, Haplotype |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於尚未完全明瞭登革病毒的致病機制,目前對於登革病毒所造成的疾病仍缺乏有效的預防疫苗、治療藥物、以及預後方法。我們先前發現,人類細胞質中的先天免疫因子TMEM173會被登革病毒蛋白酶NS2B3所切割而削弱宿主的抗病毒能力。在本研究中,我們選殖出兩種不同的人類TMEM173單倍體:MITA和STING並探討對於登革病毒蛋白酶的感受性是否發生改變。我們發現,無論在病毒感染或是細胞表現病毒蛋白酶NS2B3的情況下,雖然STING和MITA都能被蛋白酶切割,但MITA的被切割效率高於STING。我們進一步以免疫共沉澱法發現,NS2B3和MITA的交互作用能力較STING強,顯示TMEM173的被切割效率和NS2B3交互作用能力相關。有趣的是環狀質體DNA、細胞全部DNA、線性PCR產物和人造雙股DNA-poly(dA:dT)都可以增強NS2B3切割MITA的效率,而且切割效率和MITA的活化程度相關,但NS2B3切割STING的效率以及交互作用程度都不會因為這些刺激而增強。因此宿主DNA滲漏,致病原多重感染,特別是人與人之間TMEM173的單倍體差異都可能會影響宿主先天免疫反應。這項發現有助我們理解登革病毒的致病機制以及在人類族群內造成多樣化病徵的原因,有望發展成登革熱相關疾病預後指標。
Dengue virus (DENV) infection is a serious problem in tropical and subtropical area with no effective therapeutic, reliable vaccine, and prognostic biomarker. Despite the DENV pathogenesis is not fully understood, the interactions between DENV and innate immunity-related factors would contribute to the consequences in response to DENV infection. Previously, we found that human TMEM173, a cytosolic DNA sensor, was functionally impaired by DENV protease cleavage. In this study, we found that two nature haplotypes of human TMEM173, namely MITA and STING respectively, were both cleaved by either DENV infection or DENV protease NS2B3 overexpression but with different efficiency: STING is more resistant than MITA to the cleavage. By immunoprecipitation, we found that the interaction between DENV protease and MITA haplotype was much stronger than that between the protease and STING haplotype. Since the DENV protease-mediated TMEM173 cleavage can be enhanced by cytosolic DNA stimuli, we checked whether this phenomenon is restricted by particular DNA species. Interestingly, the interaction between dengue protease and MITA can be further enhanced and then facilitate MITA cleavage in response to several DNA species stimuli, including cellular total DNA, circular plasmid DNA, linear PCR products, and synthetic dsDNA analog poly(dA:dT). In the case of STING, none of the TMEM173 agonists we tested can enhance STING cleavage. Therefore, host DNA leakage, bacterial superinfection, and particular human single-nucleotide polymorphism of TMEM173 may alter the host innate responses and contribute to DENV pathogenesis. These parameters might explain the diverse syndromes of DENV infection in human population and provide prognostic markers for forewarning DENV-related disease in the future.
Abe, T., and Barber, G.N. (2014). Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. Journal of virology 88, 5328-5341.
Abe, T., Harashima, A., Xia, T., Konno, H., Konno, K., Morales, A., Ahn, J., Gutman, D., and Barber, G.N. (2013). STING recognition of cytoplasmic DNA instigates cellular defense. Molecular cell 50, 5-15.
Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T., Witte, G., Rohl, I., Hopfner, K.P., Ludwig, J., and Hornung, V. (2013). cGAS produces a 2 '-5 '-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380-+.
Acosta, E.G., Castilla, V., and Damonte, E.B. (2008). Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89, 474-484.
Ahn, J., Gutman, D., Saijo, S., and Barber, G.N. (2012). STING manifests self DNA-dependent inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America 109, 19386-19391.
Alto, B.W., and Bettinardi, D. (2013). Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am J Trop Med Hyg 88, 497-505.
Anand, C.M., Skinner, A.R., Malic, A., and Kurtz, J.B. (1983). Interaction of L. pneumophilia and a free living amoeba (Acanthamoeba palestinensis). The Journal of hygiene 91, 167-178.
Andrejeva, J., Childs, K.S., Young, D.F., Carlos, T.S., Stock, N., Goodbourn, S., and Randall, R.E. (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proceedings of the National Academy of Sciences of the United States of America 101, 17264-17269.
Arias, C.F., Preugschat, F., and Strauss, J.H. (1993). Dengue-2 Virus Ns2b and Ns3 Form a Stable Complex That Can Cleave Ns3 within the Helicase Domain. Virology 193, 888-899.
Ashour, J., Laurent-Rolle, M., Shi, P.Y., and Garcia-Sastre, A. (2009). NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. Journal of virology 83, 5408-5418.
Balada, E., Selva-O'Callaghan, A., Felip, L., Ordi-Ros, J., Simeon-Aznar, C.P., Solans-Laque, R., and Vilardell-Tarres, M. (2016). Sequence analysis of TMEM173 exon 5 in patients with systemic autoimmune diseases. Autoimmunity 49, 12-16.
Balada, E., Selva-O'Callaghan, A., Felip, L., Ordi-Ros, J., Simeon-Aznar, C.P., Solans-Laque, R., and Vilardell-Tarres, M. (2016). Sequence analysis of TMEM173 exon 5 in patients with systemic autoimmune diseases. Autoimmunity 49, 12-16.
Barreiro, L.B., Laval, G., Quach, H., Patin, E., and Quintana-Murci, L. (2008). Natural selection has driven population differentiation in modern humans. Nat Genet 40, 340-345.
Bazan, J.F., and Fletterick, R.J. (1989). Detection of a Trypsin-Like Serine Protease Domain in Flaviviruses and Pestiviruses. Virology 171, 637-639.
Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., and Canard, B. (2004). The RNA helicase, nucleotide 5 '-triphosphatase, and RNA 5 '-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-218.
Brinkworth, R.I., Fairlie, D.P., Leung, D., and Young, P.R. (1999). Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol 80, 1167-1177.
Brookes, A.J. (1999). The essence of SNPs. Gene 234, 177-186.
Burdette, D.L., Monroe, K.M., Sotelo-Troha, K., Iwig, J.S., Eckert, B., Hyodo, M., Hayakawa, Y., and Vance, R.E. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-U111.
Cabrera‐Hernandez, A., Thepparit, C., Suksanpaisan, L., and Smith, D.R. (2007). Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. Journal of medical virology 79, 386-392.
Chambers, T.J., Weir, R.C., Grakoui, A., Mccourt, D.W., Bazan, J.F., Fletterick, R.J., and Rice, C.M. (1990). Evidence That the N-Terminal Domain of Nonstructural Protein Ns3 from Yellow-Fever Virus Is a Serine Protease Responsible for Site-Specific Cleavages in the Viral Polyprotein. Proceedings of the National Academy of Sciences of the United States of America 87, 8898-8902.
Chandel, N.S., Budinger, G.R., and Schumacker, P.T. (1996). Molecular oxygen modulates cytochrome c oxidase function. The Journal of biological chemistry 271, 18672-18677.
Chen, H.H., Sun, H., You, F.P., Sun, W.X., Zhou, X., Chen, L., Yang, J., Wang, Y.T., Tang, H., Guan, Y.K., et al. (2011). Activation of STAT6 by STING Is Critical for Antiviral Innate Immunity. Cell 147, 436-446.
Chiliveru, S., Rahbek, S.H., Jensen, S.K., Jorgensen, S.E., Nissen, S.K., Christiansen, S.H., Mogensen, T.H., Jakobsen, M.R., Iversen, L., Johansen, C., et al. (2014). Inflammatory Cytokines Break Down Intrinsic Immunological Tolerance of Human Primary Keratinocytes to Cytosolic DNA. Journal of immunology 192, 2395-2404.
Chiu, Y.H., Macmillan, J.B., and Chen, Z.J. (2009). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576-591.
Clyde, K., and Harris, E. (2006). RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. Journal of virology 80, 2170-2182.
da Cruz, L.C.D.A., Serra, O.P., Leal-Santos, F.A., Ribeiro, A.L.M., Slhessarenko, R.D., and dos Santos, M.A. (2015). Natural transovarial transmission of dengue virus 4 in Aedes aegypti from Cuiaba, State of Mato Grosso, Brazil. Rev Soc Bras Med Tro 48, 18-25.
D'Argenio, D.A., and Miller, S.I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology 150, 2497-2502.
Davies, B.W., Bogard, R.W., Young, T.S., and Mekalanos, J.J. (2012). Coordinated Regulation of Accessory Genetic Elements Produces Cyclic Di-Nucleotides for V. cholerae Virulence. Cell 149, 358-370.
Emery, A.E.H., Korf, B.R., Pyeritz, R.E., and Rimoin, D.L. (2013). Emery and Rimoin's principles and practice of medical genetics (San Diego: Elsevier Science,), pp. 1 online resource.
Evnin, L.B., Vasquez, J.R., and Craik, C.S. (1990). Substrate-Specificity of Trypsin Investigated by Using a Genetic Selection. Proceedings of the National Academy of Sciences of the United States of America 87, 6659-6663.
Fields, B.N., Howley, P.M., and Knipe, D.M. (1996). Fields Virology, 3rd ed edn (Philadelphia: Lippincott-Raven Publishers).
Gorbalenya, A.E., Donchenko, A.P., Koonin, E.V., and Blinov, V.M. (1989). N-Terminal Domains of Putative Helicases of Flaviviruses and Pestiviruses May Be Serine Proteases. Nucleic Acids Res 17, 3889-3897.
Guo, S.W., and Reed, D.R. (2001). The genetics of phenylthiocarbamide perception. Ann Hum Biol 28, 111-142.
Halstead, S.B. (1982). Immune enhancement of viral infection. In Immunity and Concomitant Immunity in Infectious Diseases (Karger Publishers), pp. 301-364.
Hernandez, S.I.D., Ortiz-Navarrete, V., Ludert, J.E., and Del Angel, R.M. (2013). Dengue specific IgM seropositivity correlates with severe clinical outcome. J Clin Virol 58, 751-751.
Holm, C.K., Rahbek, S.H., Gad, H.H., Bak, R.O., Jakobsen, M.R., Jiang, Z.Z., Hansen, A.L., Jensen, S.K., Sun, C., Thomsen, M.K., et al. (2016). Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature communications 7.
Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518.
Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678.
Jin, L., Waterman, P.M., Jonscher, K.R., Short, C.M., Reisdorph, N.A., and Cambier, J.C. (2008). MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28, 5014-5026.
Jones, M., Davidson, A., Hibbert, L., Gruenwald, P., Schlaak, J., Ball, S., Foster, G.R., and Jacobs, M. (2005). Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. Journal of virology 79, 5414-5420.
Kapoor, M., Zhang, L.W., Ramachandra, M., Kusukawa, J., Ebner, K.E., and Padmanabhan, R. (1995). Association between Ns3 and Ns5 Proteins of Dengue Virus Type-2 in the Putative Rna Replicase Is Linked to Differential Phosphorylation of Ns5. J Biol Chem 270, 19100-19106.
Konno, H., Konno, K., and Barber, G.N. (2013). Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688-698.
Lee, Y.J., Zhang, X., Vazquez, E., Shivasabesan, G., Young, H.A., Murphy, A., Wang, H., Suffredini, A.F., Siebenlist, U., and Kottilil, S. (2014). Impaired HCV clearance in HIV/HCV coinfected subjects treated with PegIFN and RBV due to interference of IFN signaling by IFNalphaR2a. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 34, 28-34.
Li, H.T., Clum, S., You, S.H., Ebner, K.E., and Padmanabhan, R. (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of virology 73, 3108-3116.
Lin, C.F. (2016). Dengue virus infection causes Nrf2 activation to induce CLEC5A-facilitated TNF-alpha production in mononuclear phagocytes. Journal of immunology 196.
Liu, Q., Zhou, Y.H., and Yang, Z.Q. (2016). The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13, 3-10.
Martina, B.E., Koraka, P., and Osterhaus, A.D. (2009). Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581.
Mazzon, M., Jones, M., Davidson, A., Chain, B., and Jacobs, M. (2009). Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. The Journal of infectious diseases 200, 1261-1270.
Miyakoshi, A., Takemoto, M., Shiraki, K., and Hayashi, A. (2012). Varicella-zoster virus keratitis with asymptomatic conjunctival viral shedding in the contralateral eye. Case reports in ophthalmology 3, 343-348.
Morrison, J., Aguirre, S., and Fernandez-Sesma, A. (2012). Innate Immunity Evasion by Dengue Virus. Viruses-Basel 4, 397-413.
Munoz-Jordan, J.L., Sanchez-Burgos, G.G., Laurent-Rolle, M., and Garcia-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences of the United States of America 100, 14333-14338.
Nazmi, A., Dutta, K., Hazra, B., and Basu, A. (2014). Role of pattern recognition receptors in flavivirus infections. Virus Res 185, 32-40.
Niyomrattanakit, P., Yahorava, S., Mutule, I., Mutulis, F., Petrovska, R., Prusis, P., Katzenmeier, G., and Wikberg, J.E.S. (2006). Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 397, 203-211.
Oeckinghaus, A., Hayden, M.S., and Ghosh, S. (2011). Crosstalk in NF-kappa B signaling pathways. Nature immunology 12, 695-708.
Parvatiyar, K., Zhang, Z.Q., Teles, R.M., Ouyang, S.Y., Jiang, Y., Iyer, S.S., Zaver, S.A., Schenk, M., Zeng, S., Zhong, W.W., et al. (2012). The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature immunology 13, 1155-+.
Plotch, S.J., Bouloy, M., Ulmanen, I., and Krug, R.M. (1981). A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847-858.
Rodriguez-Madoz, J.R., Belicha-Villanueva, A., Bernal-Rubio, D., Ashour, J., Ayllon, J., and Fernandez-Sesma, A. (2010). Inhibition of the Type I Interferon Response in Human Dendritic Cells by Dengue Virus Infection Requires a Catalytically Active NS2B3 Complex. Journal of virology 84, 9760-9774.
Rosen, S. (1986). The theory of equalizing differences. Handbook of labor economics 1, 641-692.
Ryan, L., Dai, J.H., Fitzgerald-Bocarsly, P., Schwartz, K., and Diamond, G. (2013). Induction of human Beta-Defensin-1 gene expression is dependent on IRF-7 and PU.1. Journal of immunology 190.
Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., et al. (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 106, 20842-20846.
Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., et al. (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 106, 20842-20846.
Seth, R.B., Sun, L.J., and Chen, Z.J.J. (2006). Antiviral innate immunity pathways. Cell Res 16, 141-147.
Shi, P.-Y. (2012). Molecular virology and control of flaviviruses (Horizon Scientific Press).
Shresta, S., Sharar, K.L., Prigozhin, D.M., Snider, H.M., Beatty, P.R., and Harris, E. (2005). Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. Journal of immunology 175, 3946-3954.
Silva, M.M., Gil, L.H., Marques, E.T., Jr., and Calzavara-Silva, C.E. (2013). Potential biomarkers for the clinical prognosis of severe dengue. Mem Inst Oswaldo Cruz 108, 755-762.
Spencer, N.J., Bywater, R.A.R., and Taylor, G.S. (1998). Evidence that myoelectric complexes in the isolated mouse colon may not be of myogenic origin. Neurosci Lett 250, 153-156.
Sun, L.J., Wu, J.X., Du, F.H., Chen, X., and Chen, Z.J.J. (2013). Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science 339, 786-791.
Sun, W., Li, Y., Chen, L., Chen, H., You, F., Zhou, X., Zhou, Y., Zhai, Z., Chen, D., and Jiang, Z. (2009). ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences of the United States of America 106, 8653-8658.
Syvanen, A.C., Landegren, U., Isaksson, A., Gyllensten, U., and Brookes, A. (1999). First International SNP Meeting at Skokloster, Sweden, August 1998. Enthusiasm mixed with scepticism about single-nucleotide polymorphism markers for dissecting complex disorders. European journal of human genetics : EJHG 7, 98-101.
Taillon-Miller, P., Piernot, E.E., and Kwok, P.Y. (1999). Efficient approach to unique single-nucleotide polymorphism discovery. Genome Res 9, 499-505.
Takeda, K., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiwamura, S., Nakanishi, K., Yoshida, N., Kishimoto, T., and Akira, S. (1996). Essential role of Stat6 in IL-4 signalling. Nature 380, 627-630.
Takeuchi, O., and Akira, S. (2010). Pattern Recognition Receptors and Inflammation. Cell 140, 805-820.
Vanyushin, B.F., Belozersky, A.N., Kokurina, N.A., and Kadirova, D.X. (1968). 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature 218, 1066-1067.
Vanyushin, B.F., Tkacheva, S.G., and Belozersky, A.N. (1970). Rare bases in animal DNA. Nature 225, 948-949.
West, A.P., Khoury-Hanold, W., Staron, M., Tal, M.C., Pineda, C.M., Lang, S.M., Bestwick, M., Duguay, B.A., Raimundo, N., MacDuff, D.A., et al. (2015). Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553-557.
Westaway, E. (1987). Flavivirus replication strategy. Advances in virus research 33, 45-90.
Xia, P., Ye, B.Q., Wang, S., Zhu, X.X., Du, Y., Xiong, Z., Tian, Y., and Fan, Z.S. (2016). Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nature immunology 17, 369-+.
Yan, H., Dalal, K., Hon, B.K., Youkharibache, P., Lau, D., and Pio, F. (2008). RPA nucleic acid-binding properties of IFI16-HIN200. Biochimica et biophysica acta 1784, 1087-1097.
Yi, G., Brendel, V.P., Shu, C., Li, P., Palanathan, S., and Cheng Kao, C. (2013). Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PloS one 8, e77846.
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737.
Yu, C.Y., Chang, T.H., Liang, J.J., Chiang, R.L., Lee, Y.L., Liao, C.L., and Lin, Y.L. (2012). Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS pathogens 8, e1002780.
Zaitseva, E., Yang, S.-T., Melikov, K., Pourmal, S., and Chernomordik, L.V. (2010). Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS pathogens 6, e1001131.
Zhang, X.S., Alekseev, K., Jung, K., Vlasova, A., Hadya, N., and Saif, L.J. (2008). Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome. J Virol 82, 4420-4428.
Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12, 959-965.
Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550.
Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550.
Zhou, Y.M., Jin, Q.A., Zhu, T.W., and Akama, Y.F. (2011). Adsorption of chromium (VI) from aqueous solutions by cellulose modified with beta-CD and quaternary ammonium groups. J Hazard Mater 187, 303-310.
校內:2022-12-31公開