研究生: |
林思佑 Lin, Szu-Yu |
---|---|
論文名稱: |
五環素/駢苯衍生物有機太陽能電池之研究 Investigation of Pentacene/Perylene Derivative Based Organic Solar Cells |
指導教授: |
周維揚
Chou, Wei-Yang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 駢苯衍生物 、有機太陽能電池 、五環素 、轉換效率 |
外文關鍵詞: | organic solar cells, pentacene, perylene derivatives, power conversion efficiency |
相關次數: | 點閱:147 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以五環素(pentacene)/駢苯衍生物(perylene derivatives)異質接面太陽能電池之特性,利用pentacene作為電子施體有機材料,N,N'-dioctyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-8C)或N,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-13C)作為電子受體有機材料,製作出異質接面為pentacene/PTCDI-8C及pentacene/PTCDI-13C兩種結構的有機太陽能電池,比較不同碳數的駢苯衍生物對於有機太陽能電池之光電轉換效率之影響。
在AM1.5G、100 mW/cm2的模擬太陽光下,以銀/鋁複合電極為陰極的pentacene/PTCDI-13C異質接面太陽能電池具有短路電流0.415 mA/cm2、開路電壓0.413 V、填充因子0.55及光電轉換效率0.095%,皆比pentacene/PTCDI-8C異質接面太陽能電池的短路電流0.4 mA/cm2、開路電壓0.378 V、填充因子0.49及光電轉換效率0.074%來的大。由薄膜分析可知PTCDI-13C比PTCDI-8C具有更低的電子電洞復合發光效率,可以讓較多激子到達異質接面進行電荷分離,減少電子電洞對復合發光的機率;此外,PTCDI-13C具有較大的載子遷移率,推論這些均為造成pentacene/PTCDI-13C異質接面太陽能電池具有較佳光電轉換效率的原因。
The characteristics of pentacene/perylene derivatives based organic solar cells are discussed in this thesis. Donor and acceptor layers are pentacene and N,N'-dioctyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-8C) or N,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-13C) respectively. Two organic solar cells, pentacene/PTCDI-8C heterojunction and pentacene/PTCDI-13C heterojunction, were fabricated to compare the influence of power conversion efficiency among perylene derivatives with various numbers of carbon molecules.
Under the sunlight simulator with AM1.5G filter and 100 mW/cm2, the solar cells of pentacene/PTCDI-13C heterojunction with Ag/Al cathode has J-V characteristics of short-circuit current density of 0.415 mA/cm2, open-circuit voltage of 0.413 V, fill factor of 0.55, and power conversion efficiency of 0.095%, which are better than those of pentacene/PTCDI-8C heterojunction. In pentacene/PTCDI-8C based solar cells, the short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency are 0.4 mA/cm2, 0.378 V, 0.49, and 0.074%, respectively. Moreover, according to the thin film analysis, the PTCDI-13C thin film’s excitons in the surface of heterojunction for dissociation are more and the probability of radiative recombination of electron-hole pair is less than PTCDI-8C. The PTCDI-13C thin-film possesses better carrier mobility than PTCDI-8C. Therefore, we could conclude that those factors mentioned above are the keys of the pentacene/PTCDI-13C based solar cells with better power conversion efficiency.
[1]. N. S. Lewis, Reported on the Basic Energy Sciences Workshop on Solar Energy Utilization, Bethesda, Maryland, USA, April 18-21 (2005)
[2]. S. E. Shaheen, D. S. Ginley, G. E. Jabbour, ”Organic-Based Photovoltaics:Toward Low-Cost Power Generation”, Mrs. Bull. 30, 10 (2005)
[3]. K. Ramanathan , M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. mmel Noufi, J. Ward and A. Duda, ”Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-film Solar Cells”, Res. Appl. 11, 225 (2003)
[4]. M. Gratzel, ”Photochemical Cells”, Nature 414, 338 (2001)
[5]. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, ”Hybrid nanorod-polymer solar cells”, Science 295, 2425 (2002)
[6]. http://www.siemens.com
[7]. C. W. Tang, ”Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 83 (1986).
[8]. P. Peumans, V. Bulovi, and S. R. Forrest, ”Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett. 76, 2650 (2000).
[9]. P. Peumans, and S. R. Forrest, ”Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett. 79, 126 (2001).
[10]. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, ”4.2% efficient organic photovoltaic cells with low series resistances”, Appl. Phys. Lett. 84, 3013 (2004).
[11]. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, ”Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions”, Appl. Phys. Lett. 85, 5757 (2005).
[12]. Karg, W. Riess, V. Dyakonov, and M. Schwoerer, ”Electrical and optical characterization of poly(phenylene-vinylene)light emitting diodes”, Synth. Met. 54, 427 (1993).
[13]. G.Yu, K. Pakbaz, A.J.Heeger, ”Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Appl. Phys. Lett. 64, 3422 (1994).
[14]. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, ”Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science 270, 1789 (1995).
[15]. F. Padinger, R. S. Rittberger and N. S. Sariciftci, ”Effects of Postproduction Treatment on Plastic Solar Cells ” , Adv. Funct. Mater. 13, 85 (2003).
[16]. Dipl. Ing. Klaus Petritsch, ”Organic Solar Cell Architectures ”, PhD Thesis, (2000)
[17]. P. Peumans, S. Uchida, and S. R. Forrest, ”Efficient bulk heterojunction photovoltaic cells based on small molecular weight organic thin films”, Nature 425, 158 (2003)
[18]. S. R. Forrest, ” The Limits to Organic Photovoltaic Cell Efficiency”, Mrs. Bull. 30, 28 (2005)
[19]. C. Kittel, Introduction to Solid State Physics, Chapter 11, John Wiley & Sons, New York (1996).
[20]. S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Chapter 6.
[21]. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, ”High Performance Organic Thin Film Transistors”, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
[22]. Standard Test Methods for Electrical Performance of Non-Concentrator Terrestrial Photovoltaic Cells Using Reference Cells, American Society for Testing and Materials Committee, 948
[23]. N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, ”Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel” , Appl. Phys. Lett. 85, 4663 (2004)
[24]. S. Yoo, B. Domercq, and B. Kipplen, ”Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions”, Appl. Phys. Lett. 85, 5427 (2004)
[25]. S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, ”High mobility n-type thin-film transistors based on N,N-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett. 89, 112108 (2006)
[26]. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, ”Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature”, J. Phys. Chem. B 108, 19281(2004)
[27]. A. K. Pandey, K. Unni, J. M. Nunzi, ”Pentacene/Perylene co-deposited solar cells”, Thin Solid Films. 511-512, 529 (2006)
[28]. A. K. Pandey, S. D. Seignon, and J. M. Nunzi, ”Pentacene: PTCDI-C13H27 molecular blends efficiently harvest light for solar cell applications”, Appl. Phys. Lett. 89, 113506 (2006)
[29]. B. Mishori, E. A. Katz, D. Faiman, and Y. Shapira, ”Studies of electron structure of C60 thin films by surface photovoltage spectroscopy”, Solid state Commun 102, 489 (1997)
[30]. B. Mishori, Y. Shapira, A. B. Marian, M. Manciu, and A. Devenyi, ”Studies of C60 thin films using surface photovoltage spectroscopy”, Chem. Phys. Lett. 264, 163 (1997)
[31]. T. Arai, Y. Murakami, H. Suematsu, K. Kikuchi, Y. Achiba, and I. Ikemoto, ”Resistivity of single crystal C60 and effect of oxygen”, Solid State Commun 84, 827 (1992)