| 研究生: |
盧信峯 Lu, Hsin-Feng |
|---|---|
| 論文名稱: |
雙陽離子液體的構形與結構:理論計算與動力學性質分析 Conformations and Structures of Dicationic Ionic Liquids: Theoretical Calculations and Transport-Property Analyses |
| 指導教授: |
蘇世剛
Su, Shyh-Gang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 雙陽離子液體 、理論計算 、黏度 、導電度 、擴散係數 、結構 、構型 |
| 外文關鍵詞: | dicationic ionic liquids, theoretical, viscosity, conductivity, diffusion coefficient, structure, conformation |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇以研究探討雙陽離子液體的構形與結構為目的,合成了八組改變一側官能基的咪唑雙陽離子液體,陰離子統一使用TFSI-陰離子(bis(trifluoromethanesulfonyl)amide),來進行一系列理論計算及動力學性質分析的探討。
實驗中我們用變溫的方式測量八組雙陽離子液體的黏度、密度、導電度,利用DSC測量玻璃轉化溫度,另外也使用核磁共振(PGSE-NMR)的技術,量測陰陽離子在變溫條件下的擴散係數,並探討變換一側官能基的結構對於整體雙陽離子液體的物理性質影響。
結果顯示當雙陽離子液體官能基結構為剛性環、芳香環者會造成黏度下降、導電度及擴散係數上升的效果;官能基結構為長側鏈及較大極性者會造成黏度上升、導電度及擴散係數下降的效果。然而體積性質則是以官能基為剛性環及極性大者排列較容易體積較小;官能基有長側鏈者會破壞排列體積較大。另一方面我們透過比較單、雙陽離子液體的性質,結果顯示對雙陽離子液體而言雙陽離子主導黏度趨勢而陰離子主導導電度趨勢,表現出一(雙陽離子)對多(陰離子)作用的行為結構。
同時我們也參考Bodo等人對於雙陽離子微觀下構形的探討,進行一系列雙陽離子對不同構形的計算,結果表示在氣態下雙陽離子對確實是以糾纏長碳鏈為主要的構形。但當我們進行理論振動光譜及實驗紅外線光譜的相互比對,結果卻是雙陽離子液體在液態下表現出伸長長碳鏈為主要的構形存在,此結果則與Bodo等人在2011年發表的結果相符。
最後我們將1.影響性質的微觀下行為結構與2.微觀下的構形,利用離子對與額外陰離子作用能的探討連結起關連性,建立起性質-模型-構形的關係,也證明了雙陽離子液體這種一對多作用的行為結構正是單陽離子下所看不到的,即為造成單、雙陽離子液體物化性質差異的主因。
In this work we investigate the conformations and structures of eight dicationic ionic liquids (DILs) using theoretical calculations and transport-property analyses. The anion of the eight DILs is bis(trifluoromethanesufonyl)amide, the cations of the eight DILs contain an alkyl chain link to two units, one unit is imidazolium, and the other unit is quaternary ammonium.
In order to realize the differences of physicochemical properties of each dication, we measured density, viscosity, conductivity, self-diffusion coefficient, and glass transition temperature of these DILs at various temperatures.
The results indicate that DILs’ functional group with rigid ring and aromatic ring structure shows low viscosity, high conductivity, and high diffusion coefficient. However, polar and longer side-chain DILs shows high viscosity, low conductivity, and low diffusion coefficient. Volume decreases with rigid ring and polar functional group, and increases with longer side-chain. On the other hand, we compare the transport-property of monocationic ILs and DILs, the result indicates that dication of DILs controls the tendency of viscosity and anion of DILs controls the tendency conductivity. It also means one dication may interact with many anions.
We also compute different kinds of conformations of dicationic ion pair. It shows entangled alkyl chain is the dominant conformation of dicationic ion pair in gas state. However, it presents different result when we compare the theoretical vibration spectrum with experimental infrared spectrum, indicating stretched alkyl chain is the dominant conformation in liquid state, similar results are also reported by Bodo et al.
Finally, we add additional TFSI- anion to the ionic pair and investigate the structure (one dication interacts with many anions) and conformation (dicationic stretched conformation) by calculating interaction energy of monocationic and dicationic ion pair. We demonstrate that the structure of one dication interacts with many anions system does not exist for monocationic ionic liquids, that’s the dominant difference of the physicochemical property between monocationic and dicationic ionic liquids.
(1)Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Australian Journal of Chemistry 2004, 57, 113.
(2)Kaar, J. L.; Jesionowski, A. M.; Berberich, J. A.; Moulton, R.; Russell, A. J. Journal of the American Chemical Society 2003, 125, 4125.
(3)Lee, J. K.; Kim, M.-J. The Journal of Organic Chemistry 2002, 67, 6845.
(4)Zhao, H.; Malhotra, S. V. Biotechnol. Lett. 2002, 24, 1257.
(5)Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106.
(6)Hapiot, P.; Lagrost, C. Chemical Reviews 2008, 108, 2238.
(7)Endres, F.; Zein El Abedin, S. Physical Chemistry Chemical Physics 2006, 8, 2101.
(8)MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Pringle, J. M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Accounts of Chemical Research 2007, 40, 1165.
(9)Zeng, Z.; Phillips, B. S.; Xiao, J.-C.; Shreeve, J. n. M. Chemistry of Materials 2008, 20, 2719.
(10)Koel, M. Critical Reviews in Analytical Chemistry 2005, 35, 177.
(11)Tan, S. S. Y.; MacFarlane, D. R.; Upfal, J.; Edye, L. A.; Doherty, W. O. S.; Patti, A. F.; Pringle, J. M.; Scott, J. L. Green Chemistry 2009, 11, 339.
(12)Sun, H.; Zhang, D.; Liu, C.; Zhang, C. Journal of Molecular Structure: THEOCHEM 2009, 900, 37.
(13)Anastas, P. T. W., J. C. Green Chemistry: Theory and Practice; Press: New York, 1998; Vol. null.
(14)Anderson, J. L.; Armstrong, D. W. Analytical Chemistry 2003, 75, 4851.
(15)Carda-Broch, S. a. B., A and Armstrong, D W Analytical and Bioanalytical Chemistry 2003, 375, 191.
(16)Baranyai, K. J.; Deacon, G. B.; MacFarlane, D. R.; Pringle, J. M.; Scott, J. L. Australian Journal of Chemistry 2004, 57, 145.
(17)Zana, R. Current Opinion in Colloid & Interface Science 1996, 1, 566.
(18)Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. Journal of the American Chemical Society 2004, 127, 593.
(19)Shirota, H.; Mandai, T.; Fukazawa, H.; Kato, T. Journal of Chemical & Engineering Data 2011, 56, 2453.
(20)Anderson, J. L. A., D. W. Anal. Chem. 2005, 77, 6453.
(21)Qi, M.; Armstrong, D. Analytical and Bioanalytical Chemistry 2007, 388, 889.
(22)Huang, K.; Han, X.; Zhang, X.; Armstrong, D. Analytical and Bioanalytical Chemistry 2007, 389, 2265.
(23)Han, X.; Armstrong, D. W. Organic Letters 2005, 7, 4205.
(24)Jin, C.-M.; Ye, C.; Phillips, B. S.; Zabinski, J. S.; Liu, X.; Liu, W.; Shreeve, J. n. M. Journal of Materials Chemistry 2006, 16, 1529.
(25)Yu, G.; Yan, S.; Zhou, F.; Liu, X.; Liu, W.; Liang, Y. Tribology Letters 2007, 25, 197.
(26)Palacio, M.; Bhushan, B.; 4 ed.; AVS: 2009; Vol. 27, p 986.
(27)Zhang, Z.; Zhou, H.; Yang, L.; Tachibana, K.; Kamijima, K.; Xu, J. Electrochimica Acta 2008, 53, 4833.
(28)Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N.-G.; Ahn, K.-D. Journal of Power Sources 2008, 175, 692.
(29)Zafer, C.; Ocakoglu, K.; Ozsoy, C.; Icli, S. Electrochimica Acta 2009, 54, 5709.
(30)Edward, J. T. Journal of Chemical Education 1970, 47, 261.
(31)Bodo, E.; Caminiti, R. The Journal of Physical Chemistry A 2010, 114, 12506.
(32)Bodo, E.; Chiricotto, M.; Caminiti, R. The Journal of Physical Chemistry B 2011, 115, 14341.
(33)Purcell, E. M.; Torrey, H. C.; Pound, R. V. Physical Review 1946, 69, 37.
(34)Bloch, F.; Hansen, W. W.; Packard, M. Physical Review 1946, 69, 127.
(35)Arnold, J. T.; Dharmatti, S. S.; Packard, M. E. The Journal of Chemical Physics 1951, 19, 507.
(36)Tyrrell, H. J. V. H., K. R. Diffusion in Liquids Butterworths: London, 1984.
(37)Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems Cambridge University Cambridge, 1984.
(38)Stejskal, E. O.; Tanner, J. E. The Journal of Chemical Physics 1965, 42, 288.
(39)L., C. E. Diffusion-Mass Transfer in Fluid Systems Cambridge University Press: Cambridge, 1984.
(40)Vogel, H. Phys. 1921, 22, 645.
(41)Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. The Journal of Physical Chemistry B 2006, 110, 19593.
(42)Yoshida, Y.; Kondo, M.; Saito, G. The journal of physical chemistry. B 2009, 113, 8960.
(43)Greaves, T. L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C. J. The Journal of Physical Chemistry B 2006, 110, 22479.
(44)Anouti, M. r. m.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. The Journal of Physical Chemistry B 2008, 112, 13335.
(45)Zhao, C.; Burrell, G.; Torriero, A. A. J.; Separovic, F.; Dunlop, N. F.; MacFarlane, D. R.; Bond, A. M. The Journal of Physical Chemistry B 2008, 112, 6923.
(46)Roothaan, C. C. J. Reviews of Modern Physics 1951, 23, 69.
(47)McWeeny, R.; Diercksen, G. The Journal of Chemical Physics 1968, 49, 4852.
(48)Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
(49)Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.
(50)W. Kohn, L. J. S. Physical Review, 140, 1133.
(51)Becke, A. D. Physical Review A 1988, 38, 3098.
(52)Perdew, J. P. W., Y. Physical Review B 1992, 45, 13244.
(53)Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785.
(54)Köddermann, T.; Wertz, C.; Heintz, A.; Ludwig, R. ChemPhysChem 2006, 7, 1944.
(55)Wulf, A.; Fumino, K.; Michalik, D.; Ludwig, R. ChemPhysChem 2007, 8, 2265.
(56)Köddermann, T.; Wertz, C.; Heintz, A.; Ludwig, R. Angewandte Chemie International Edition 2006, 45, 3697.
(57)Fumino, K.; Wulf, A.; Ludwig, R. Angewandte Chemie International Edition 2008, 47, 8731.
(58)Zhang, L.; Xu, Z.; Wang, Y.; Li, H. The Journal of Physical Chemistry B 2008, 112, 6411.
(59)Zhang, Q.-G.; Wang, N.-N.; Yu, Z.-W. The Journal of Physical Chemistry B 2010, 114, 4747.
(60)Fumino, K.; Peppel, T.; Geppert-Rybczynska, M.; Zaitsau, D. H.; Lehmann, J. K.; Verevkin, S. P.; Kockerling, M.; Ludwig, R. Physical Chemistry Chemical Physics 2011, 13, 14064.
(61)Zhang, L.; Wang, Y.; Xu, Z.; Li, H. The Journal of Physical Chemistry B 2009, 113, 5978.
(62)Wang, N.-N.; Zhang, Q.-G.; Wu, F.-G.; Li, Q.-Z.; Yu, Z.-W. The Journal of Physical Chemistry B 2010, 114, 8689.
(63)Khosropour, A. R.; Noei, J.; Mirjafari, A. JICS 2010, 7, 752.
(64)Noda, A.; Hayamizu, K.; Watanabe, M. The Journal of Physical Chemistry B 2001, 105, 4603.
(65)Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. The Journal of Physical Chemistry B 2004, 108, 16593.
(66)Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. The Journal of Physical Chemistry B 2005, 109, 6103.
(67)Tokuda, H.; Ishii, K.; Susan, M. A. B. H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. The Journal of Physical Chemistry B 2006, 110, 2833.
(68)Yoshizawa, M.; Xu, W.; Angell, C. A. Journal of the American Chemical Society 2003, 125, 15411.
(69)Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E. The Journal of Physical Chemistry B 2007, 111, 4641.
(70)Triolo, A.; Russina, O.; Fazio, B.; Appetecchi, G. B.; Carewska, M.; Passerini, S. The Journal of Chemical Physics 2009, 130, 164521.
(71)Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.; Yoko, T. Inorganic Chemistry 2004, 43, 1458.
(72)Li, H.; Boatz, J. A.; Gordon, M. S. Journal of the American Chemical Society 2007, 130, 392.
(73)Zhao, Y.; Gao, S.; Wang, J.; Tang, J. The Journal of Physical Chemistry B 2008, 112, 2031.
(74)Shimomura, T.; Takamuku, T.; Yamaguchi, T. The Journal of Physical Chemistry B 2011, 115, 8518.
(75)Qiao, B.; Krekeler, C.; Berger, R.; Delle Site, L.; Holm, C. The Journal of Physical Chemistry B 2008, 112, 1743.