| 研究生: |
洪秀瑩 Hong, Siou-Ying |
|---|---|
| 論文名稱: |
蟲草素對纖維母細胞生長因子九誘導之睪丸腫瘤的抗癌作用 Anti-cancer effect of cordycepin on FGF9-induced testicular tumorigenesis |
| 指導教授: |
黃步敏
Huang, Bu-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 蟲草素 、纖維母細胞生長因子九 、萊氏細胞 、睾丸癌 、細胞週期素 |
| 外文關鍵詞: | Cordycepin, FGF9, Leydig tumor cells, testicular cancer, cell cycle, cyclin, CDK |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖維母細胞生長因子九為纖維母細胞生長因子的成員,這類因子對於胚胎及組織發育皆具有重要作用,且纖維母細胞生長因子九在性別發育成熟具有重要功能。然而,高表達的纖維母細胞生長因子九與幾種人類癌症如肺癌、卵巢癌和前列腺癌的發展及預後息息相關。先前,我們已經證實纖維母細胞生長因子九可誘導MA-10小鼠萊氏腫瘤細胞和TM3小鼠萊氏細胞中的細胞增殖,並在動物實驗中纖維母細胞生長因子九可促進MA-10細胞腫瘤的生長,顯示這可能與睾丸癌的發展相關。此外,蟲草素是一種具有抗腫瘤作用的真菌冬蟲夏草萃取物,由我們的微陣列分析顯示,在蟲草素處理後會影響MA-10細胞中纖維母細胞生長因子九和纖維母細胞生長因子受體的基因表達。因此,我們提出的論點為蟲草素可以抑制FGF9所誘導的睾丸癌腫瘤的生長。在本研究中,我們先利用MEK抑製劑(PD98059)闡明纖維母細胞生長因子九是通過活化ERK 1/2蛋白的方式促進細胞週期相關蛋白的表現。其次,蟲草素處理後可顯著降低纖維母細胞生長因子九對MA-10和TM3細胞的促進細胞增生的作用,並會隨著蟲草素劑量的增加,效果越來越顯著。由西方墨點法的結果顯示,蟲草素亦可抑制纖維母細胞生長因子九處理的MA-10細胞中pRb、E2F1、cyclin A、cyclin E1、cyclin B、CDK4、CDK2和CDK1蛋白的表達,另外也會降低纖維母細胞生長因子九所促進表現的FGFR1-4的蛋白表現量。此外,透過C57BL / 6J小鼠皮下注射MA-10腫瘤細胞的移植研究,結果顯示,蟲草素處理組能夠明顯的抑制纖維母細胞生長因子九所促進腫瘤生長的現象。進一步利用免疫組織化學染色法觀察小鼠的腫瘤切片,顯示與單獨FGF9處理組相比,纖維母細胞生長因子九/蟲草素共同處理組可顯著降低我們外源給予的纖維母細胞生長因子九蛋白的表達。蟲草素也可降低纖維母細胞生長因子九所誘導的FGFR1、FGFR2、FGFR3和FGFR4蛋白表現量。根據以上結果顯示,蟲草素可以抑制MA-10和TM3細胞增殖,並且通過降低MA-10細胞中細胞週期相關蛋白的表達。於小鼠活體試驗中,蟲草素也能有效的抑制纖維母細胞生長因子九所刺激的睾丸腫瘤發生。因此,蟲草素可能為潛在的作為治療睾丸或其他癌症的新型抗癌藥物。
Fibroblast growth factor 9 (FGF9), a member of fibroblast growth factors, exhibits important roles for tissue developments. However, high expression of FGF9 is associated with several human cancers such as lung, ovarian and prostate cancers. Previously, we have shown FGF9 could induce cell proliferation in MA-10 mouse Leydig tumor cells and TM3 mouse Leydig progenitor cells in vitro and in vivo, respectively, which could be associated with testicular cancer developments. It has been shown that Cordycepin, an extract from the fungus Cordyceps sinensis with anti-tumor effect, can reduce MA-10 and TM3 cell proliferations related to tumorigenesis. Our microarray analysis shows that Cordycepin could down-regulate gene expressions of FGF9 and fibroblast growth factor receptors (FGFRs) in MA-10 cells. Thus, we hypothesized that Cordycepin could inhibit FGF9-induced testicular tumorigenesis, and the possible mechanisms were investigated. First, we found that FGF9 could upregulate cell cycle related proteins through the activation of ERK1/2 pathway, which was clarified by using MEK inhibitor (PD98059). Second, cell proliferation rates on FGF9-treated MA-10 and TM3 cells were significantly decreased by Cordycepin treatment in a dose-dependent manner. Western blotting results showed that Cordycepin could possibly reverse pRb, cyclin E1, cyclin A, cyclin B, CDK4, CDK2 and CDK1 protein expression on FGF9-treated MA-10 cells. Furthermore, an allograft study was performed by subcutaneous injection of MA-10 tumor cells to C57BL/6J mice. The results showed that the tumor volumes and tumor weights in FGF9-treated group were significantly higher than that in control groups. FGF9-induced tumor growth in Cordycepin-treated group was significantly smaller than that in FGF9 groups, indicating Cordycepin could inhibit FGF9-induced MA-10 tumor growth. Immunohistochemical staining further revealed that FGF9/Cordycepin group could significantly reduce FGF9 protein expressions compared to the FGF9 alone treatment group. Moreover, Cordycepin could decrease FGF9-induced FGFR1, FGFR2, FGFR3 and FGFR4 protein expression. In summary, Cordycepin could suppress MA-10 and TM3 cell proliferation, and probably by reducing the expressions of cell cycle related proteins in MA-10 cells. Cordycepin also inhibited FGF9-stimulated testicular tumorigenesis in MA-10 cell induced allograft mouse model.
Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 6;270:23589-97
Aramwit P, Porasuphatana S, Srichana T, Nakpheng T (2015) Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity. Nanoscale Res Lett 27;10:152
Arooz T, Yam CH, Siu WY, Lau A, Li KK, Poon RY (2000) On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry 8;39:9494-501
Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat 52:1-15
Bercovici JP, Nahoul K, Tater D, Charles JF, Scholler R (1984) Hormonal profile of Leydig cell tumors with gynecomastia. J Clin Endocrinol Metab 59:625-30
Bode AM, Dong Z (2007) The functional contrariety of JNK. Mol Carcinog 46:591-8
Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 15;120:3446-56
Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50-83
Chambard JC, Lefloch R, Pouysségur J, Lenormand P (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773:1299-310
Chen Y, Chen YC, Lin YT, Huang SH, Wang SM (2010) Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem 24;58:11645-52
Cho SH, Kang IC (2018) The inhibitory effect of Cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem Biophys Res Commun 6;498:431-6
Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 1;257:165-73
Chung CL, Lu CW, Cheng YS, Lin CY, Sun HS, Lin YM (2013) Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome. Fertil Steril 100:1547-54
Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 23;104:875-89
Colvin JS, White A, Pratt SJ, Ornitz DM (2001) Lung hypoplasia and neonatal death in FGF9-null mice identify this gene as essential regulator of lung mesenchyme. Development 128:2095-106
Cotton LM, O'Bryan MK, Hinton BT (2008) Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 29:193-216
Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 1;429:403-17
Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358-75
Dieci MV, Arnedos M, Andre F, Soria JC (2013) Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 3:264-79
Geske MJ, Zhang X, Patel KK, Ornitz DM, Stappenbeck TS (2008) Fgf9 signaling regulates small intestinal elongation and mesenchymal development. Development 135:2959-68
Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 28;25:5220-7
Goldenberg RCS, Fortes FSA, Cristancho JM, Morales MM, Franci RC, Varanda WA, Campos de Carvalho AC (2003) J Endocrinol 177:327-35
Goldfarb M (1996) Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7:311-25
Graña X1, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 20;11:211-9
Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 16;266:1821-8
He W, Zhang MF, Ye J, Jiang TT, Fang X, Song Y (2010) Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J Zhejiang Univ Sci B 11:654-60
Helsten T, Schwaederle M, Kurzrock R (2015) Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev 34:479-96
Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR (2006) Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 1;66:1354-62
Hsieh ML, Huang ST, Huang HC, Chen Y, Hsu YC (2009) The reliability of ultrasonographic measurements for testicular volume assessment: comparison of three common formulas with true testicular volume. Asian J Androl 11:261-5
Huang Y, Jin C, Hamana T, Liu J, Wang C, An L, McKeehan WL, Wang F (2015) Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 11;11:948-60
Hwang JH, Joo JC, Kim DJ, Jo E, Yoo HS, Lee KB, Park SJ, Jang IS (2016) Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells. Am J Cancer Res 1;6:1758-71
Imesch P, Hornung R, Fink D, Fedier A (2011) Cordycepin (3'-deoxyadenosine), an inhibitor of mRNA polyadenylation, suppresses proliferation and activates apoptosis in human epithelial endometriotic cells in vitro. Gynecol Obstet Invest 72:43-9
Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O (2013) Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139:539-52
Jen CY, Lin CY, Huang BM, Leu SF (2011) Cordycepin Induced MA-10 Mouse Leydig Tumor Cell Apoptosis through Caspase-9 Pathway. Evid Based Complement Alternat Med 2011:984537
Joshaghani HR, Jafari SM, Aghaei M, Panjehpour M, Abedi H (2017) A3 adenosine receptor agonist induce G1 cell cycle arrest via Cyclin D and cyclin-dependent kinase 4 pathways in OVCAR-3 and Caov-4 cell lines. J Cancer Res Ther 13:107-12
Koepp DM, Harper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 14;97:431-4
Korc M1, Friesel RE (2009) The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 9:639-51
Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807-69
Lai MS, Huang BM (2016) The cellular and molecular mechanisms of FGF9 induced steroidogenesis, testis development and tumorigenesis. (PhD dissertation), National Cheng Kung University, Tainan
Lee EJ, Kim WJ, Moon SK (2010) Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother Res 24:1755-61
Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ (2011) Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther 2:224-34
Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK (2009) Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophys 15;490:103-9
Lee SY, Debnath T, Kim SK, Lim BO (2013) Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol 60:439-47
Lin Y, Chen L, Lin C, Luo Y, Tsai RY, Wang F (2009) Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol 1;329:44-54
Lin YM, Tsai CC, Chung CL, Chen PR, Sun HS, Tsai SJ, Huang BM (2010) Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int J Androl 1; 33:545-53
Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36-42
Mattei MG, Coulier F, Birnbaum D (1995) The human FGF9 gene maps to chromosomal region 13q11-q12. Genomics 10;29:811-2
Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 15;8:1168-75
Meloche S, Pouysségur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 14;26:3227-39
Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 13:4251-9
Mosharafa AA, Foster RS, Bihrle R, Koch MO, Ulbright TM, Einhorn LH, Donohue JP (2003) Does retroperitoneal lymph node dissection have a curative role for patients with sex cord-stromal testicular tumors. Cancer 15;98:753-7
Mosmann T (1983) Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods 65:55-63
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 7;11:558-72
Nakamura K, Shinozuka K, Yoshikawa N (2015) Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci 127:53-6
Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2006) Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 26:43-7
Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10:699-703
Ohgino K, Soejima K, Yasuda H, Hayashi Y, Hamamoto J, Naoki K, Arai D, Ishioka K, Sato T, Terai H, Ikemura S, Yoda S, Tani T, Kuroda A, Betsuyaku T (2014) Expression of fibroblast growth factor 9 is associated with poor prognosis in patients with resected non-small cell lung cancer. Lung Cancer 83:90-6
Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: reviews3005.1-12
Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. WIREs Dev Biol 4:215-66
Pan BS, Lin CY, Huang BM (2011) The effect of cordycepin on steroidogenesis and apoptosis in MA-10 mouse Leydig Tumor Cells. Evid Based Complement Alternat Med 2011;2011:750468
Pan BS, Wang YK, Lai1 MS, Mu YF, Huang BM (2015) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 25;5:13372
Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J (2004) Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 15;273:350-60
Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ (2007) Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol 213:82-90
Song S, Wientjes MG, Gan Y, Au JL (2000) Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci USA 18;97:8658-63
Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I (1994) Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 16;79:1015-24
Sun Y, Shao Y, Zhang Z, Wang L, Mariga AM, Pang G, Geng C, Ho CT, Hu Q, Zhao L (2014) Regulation of human cytokines by Cordyceps militaris. J Food Drug Anal 22:463-7
Tao X, Ning Y, Zhao X, Pan T (2016) The effects of cordycepin on the cell proliferation, migration and apoptosis in human lung cancer cell lines A549 and NCI-H460. J Pharm Pharmacol 68:901-11
Teishima J, Shoji K, Hayashi T, Miyamoto K, Ohara S, Matsubara A (2012) Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate Cancer Prostatic Dis 15:8-14
Theelen WS, Mittempergher L, Willems SM, Bosma AJ, Peters DD, van der Noort V, Japenga EJ, Peeters T, Koole K, Šuštić T, Blaauwgeers JL, van Noesel CJ, Bernards R, van den Heuvel MM (2016) FGFR1, 2 and 3 protein overexpression and molecular aberrations of FGFR3 in early stage non-small cell lung cancer. J Pathol Clin Res 13;2:223-33
Thomadaki H, Tsiapalis CM, Scorilas A (2008) The effect of the polyadenylation inhibitor cordycepin on human Molt-4 and Daudi leukaemia and lymphoma cell lines. Cancer Chemother Pharmacol 61:703-11
Thornton TM, Rincon M (2009) Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 2009;5:44-51
Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L (2015) Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett 10:595-9
Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 26;93:863-9
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116-29
Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-49
Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, Zhang F, Cao Y, Ye YY, Bao RF, Weng H, Wu WG, Mu JS, Hu YP, Jiang L, Tan ZJ, Lu W, Wang P, Liu YB (2014) Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules 31;19:11350-65
Wang Z, Wu X, Liang YN, Wang L, Song ZX, Liu JL, Tang ZS (2016) Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR. Molecules 27;21:1267
Weisser J, Landreh L, Söder O, Svechnikov K (2011) Steroidogenesis and steroidogenic gene expression in postnatal fetal rat Leydig cells. Mol Cell Endocrinol 20;341:18-24
Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K (2008) Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch Pharmacol 377:591-5
Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration.
J Tissue Eng 7;2010:218142
Zhang HR, Wang XD, Yang X, Chen D, Hao J, Cao R, Wu XZ (2017) An FGFR inhibitor converts the tumor promoting effect of TGF-β by the induction of fibroblast-associated genes of hepatoma cells. Oncogene 36:3831-41
校內:2023-08-24公開