簡易檢索 / 詳目顯示

研究生: 沈睿中
Shen, Jui-Chung
論文名稱: 不同添加劑奈米粒子油墨的性能
Characteristics of Nanoparticle Inks with Different Additives
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 106
中文關鍵詞: 奈米銀導電墨水分散性電磁波屏蔽效應咖啡環現象
外文關鍵詞: Silver nanoparticles, Conductive Ink, Dispersion, EMI Shielding Effectiveness, Coffee-ring Phenomenon
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於膠體奈米粒子的粒徑分布分析,多採用動態光散射技術(Dynamic Light Scattering, DLS)進行,該檢測技術雖然能快速得到奈米粒子的分散資訊,並且操作成本低,但仍具有許多限制如: 樣品濃度不可過高、液體顏色不可過深等,且DLS原理為偵測圓球顆粒做布朗運動時,散射光強度隨時間的波動、再經由函數換算得到粒徑分析結果,無法知道顆粒的實際原貌。因此,為討論奈米銀漿料導入不同添加劑三乙醇胺與2-乙基己胺後對顆粒形貌的影響,本研究利用液態電子顯微鏡(Liquid-Cell TEM)檢測技術,能反映液態樣品真實形貌資訊、具有較高精確度的優勢,並結合Image J軟體影像處理,同時進行奈米銀的粒徑分析,與DLS量測結果做比較。
    另外,在升溫過程中,奈米粒子容易受到液滴內外側揮發速率不均的影響,而產生不均勻的流動現象,稱為咖啡環效應(Coffee-ring Effect),形成液滴外側較厚、內側較薄的形貌;為此,本研究比較了不同溶劑、不同陰乾溫度的條件下,對咖啡環效應的影響,並討論奈米銀的流動機制。
    最後,本研究也因應現今5G通訊對於電磁波雜訊屏蔽的需求,討論不同添加劑配方的奈米銀漿料製備為銀薄膜後,其電磁波屏蔽效應(EMI Shielding Effectiveness)的表現,並探討與銀薄膜表面形貌(粗糙度、孔隙率)的關聯性。本研究的成果顯示,添加2-乙基己胺能使實驗室自製的奈米銀在溶劑α-松油醇中具有較佳的分散性與穩定性,並且製備為銀漿料後也能具有較好的電磁波屏蔽效果。

    In this study, we apply Liquid-Cell TEM to observe the morphology change of silver nanoparticle after adding two types of alkaline solvent Triethanolamine (TEA) and 2-Ethylhexylamine (2-EHA), in order to compare the PSD result by DLS analysis. And we also prepare our silver nanoparticle ink with two additives into silver thin film by spin coating method, discuss the relationship between EMI shielding effectiveness performance and their surface topography (such as roughness and porosity). We can find that, the adding of 2-EHA could make our self-produce silver nanoparticle with better dispersion and stability in solvent α-terpineol, as well as having higher EMI Shielding performance after prepared into silver thin film.

    摘要 i Abstract ii 致謝 vii 表目錄 xi 圖目錄 xii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 奈米效應介紹 3 2-2.奈米銀漿 5 2-2.1 奈米銀漿料介紹 5 2-2.2 奈米銀漿料轉移技術 7 2-2.3 奈米銀漿料發展 8 2-3奈米銀的燒結 10 2-3.1 粉末顆粒燒結 10 2-3.2 粒徑大小與燒結溫度之關係 11 2-3.3 升溫過程對燒結形貌的影響 12 2-4 奈米銀的分散 15 2-4.1 Z電位(Zeta Potential)與電雙層結構 15 2-4.2 DLVO理論 16 2-5 電磁波屏蔽效應 18 2-5.1電磁波屏蔽材料發展 18 2-5.2 電磁波屏蔽原理 18 2-6 液態電子顯微鏡(Liquid-Cell TEM)觀測 21 2-6.1 液態檢測技術介紹 21 2-6.2 粒徑分布分析 24 第三章 實驗方法與儀器介紹 26 3-1 使用材料 26 3-2 實驗流程與研究架構 27 3-2.1 不同添加劑之DLS粒徑分析、表面電位樣品配置 28 3-2.2 不同添加劑之液態TEM檢測樣品配置 29 3-2.3 Image J軟體分析奈米銀之TEM影像 30 3-2.4 pH值分析 32 3-2.5 TGA熱重分析 32 3-2.6 燒結銀薄膜孔隙率計算 33 3-2.7 EMI電磁波屏蔽效果量測 34 3-3 量測與分析儀器 35 3-3.1 動態光散射粒徑分析儀 35 3-3.2 Z電位分析儀 37 3-3.3 pH值感測計 38 3-3.4 穿透式電子顯微鏡 39 3-3.5 手持式光學顯微鏡 40 3-3.6 旋轉塗佈機 41 3-3.7 熱重分析儀 42 3-3.8 白光干涉儀 42 3-3.9 向量網路分析儀(VNA) 44 3-3.10 四點探針量測 45 第四章 結果與討論 47 4-1 不同添加劑對奈米銀分散性的影響 47 4-1.1 不同奈米銀濃度對DLS粒徑分析結果之影響 47 4-1.2 奈米銀添加三乙醇胺後粒徑分布隨時間的變化 49 4-1.3 奈米銀添加2-乙基己胺後粒徑分布隨時間的變化 51 4-1.4 Z電位(Zeta Potential)變化趨勢分析 53 4-1.5 pH值變化趨勢分析 54 4-2 液態電子顯微鏡檢測 56 4-2.1奈米銀添加三乙醇胺後形貌隨時間的變化 56 4-2.2 奈米銀添加2-乙基己胺後形貌隨時間的變化 58 4-2.3 奈米銀粒徑分布分析 60 4-2.4 奈米銀圓度分析 65 4-2.5 LCTEM與DLS檢測結果 綜合探討 67 4-3 奈米銀在升溫過程的流動 69 4-3.1不同銀漿料溶劑變因 69 4-3.2 不同陰乾溫度變因 71 4-4 奈米銀漿料性質分析 73 4-4.1 銀漿料熱重分析 73 4-4.2 銀薄膜表面形貌分析 74 4-4.3 電磁波屏蔽效應量測 75 第五章 結論 80 參考文獻列表 83

    [1] Roco, Mihail C. et al. “Nanotechnology Research Directions: IWGN Workshop Report." 2000
    [2] G. Lövestam et al., “Considerations on a definition of nanomaterial for regulatory purposes.”Joint Research Centre (JRC) Reference Reports, Vol.80, pp.00-41, 2010
    [3] G. Guisbiers et al., “Modeling the melting enthalpy of nanomaterials. ”The Journal of Physical Chemistry C, Vol.113, pp. 3566-3568, 2009
    [4] A. Moisala and E. I. Kauppinen, “The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review.” Journal of Physics: condensed matter, Vol.15, pp.3011-3035, 2003
    [5] J. Chung et al., “Nanosecond laser ablation of silver nanoparticle film.” Optical Engineering, Vol.52, 2013
    [6] Islam, Md Anwarul et al. “A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar.” Journal of environmental management, Vol.281, 2021
    [7] Cindy Vanessa Restrepo, Cristian C. Villa, “Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review, Environmental Nanotechnology.” Monitoring & Management, Vol.15, 2021
    [8] Fernandes, Iara J et al. “Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.” Scientific reports, Vol.10, 2020
    [9] Li, Chia‐Chen et al. “Effects of capping agents on the dispersion of silver nanoparticles.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.419, pp.209-215, 2013
    [10] Bai, G.. “Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection.” 2005
    [11] Yang, Tung-Han et al. “Understanding the Role of Poly(vinylpyrrolidone) in Stabilizing and Capping Colloidal Silver Nanocrystals.” ACS Nano, Vol. 15 pp.14242-14252, 2021
    [12] Zhou, Xueqin et al. “Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks.” Applied Surface Science, Vol.292, pp. 537-543, 2013
    [13] Arnaldo César Pereira, “Synthesis of a silver nanoparticle ink for fabrication of reference electrodes.” Talanta Open, Vol.5, 2022
    [14] Abbas, Naseem et al. “Fabrication and characterization of silver thin films using physical vapor deposition, and the investigation of annealing effects on their structures.” Materials Research Express, Vol.6, 2019
    [15] Yilbas, Bekir Sami et al. “Application of Water Droplet for Self-Cleaning of Surfaces.” Self-Cleaning of Surfaces and Water Droplet Mobility, Elsevier, Vol.155, pp.45-98, 2019
    [16] Klein, Eric et al. “High-Density μLED-Based Optical Cochlear Implant With Improved Thermomechanical Behavior.” Frontiers in neuroscience, Vol.12, pp.659-689, 2018
    [17] Lu, Peiyuan et al. “Ultrasonic-Assisted Micro-Silver Paste Sintering for Flip-Chip Bonding.” IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol.12, pp.1395-1400, 2022
    [18] Chin, Hui Shun et al. “A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices.” Metallurgical and Materials Transactions B, Vol.41, pp.824-832, 2010
    [19] Zhang, P., et al., “Silver nanopaste: Synthesis, reinforcements and application.” International Journal of Heat and Mass Transfer, Vol.127,
    pp.1048-1069, 2018.
    [20] Bansal, Narottam P. and Aldo Roberto Boccaccini. “Ceramics and composites processing methods.” 2012
    [21] Yamamoto, Akiyasu et al. “Towards the Realization of Higher Connectivity in MgB2 Conductors: In-situ or Sintered Ex-situ?” Japanese Journal of Applied Physics, Vol.51, 2011
    [22] Peng, Peng et al. “Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications.” ACS applied materials & interfaces, Vol.7, pp.597-618, 2015
    [23] Fang, Zhigang Zak and H. Wang. “Sintering of ultrafine and nanosized particles.” Sintering of Advanced Materials, pp.434-473, 2010
    [24] Sliz, Rafal et al. “Taming the Coffee Ring Effect: Enhanced Thermal Control as a Method for Thin-Film Nanopatterning.” Langmuir : the ACS journal of surfaces and colloids, Vol.36, pp.9562-9570, 2020
    [25] Kim, Changjae et al. “Electrical conductivity enhancement in inkjet-printed narrow lines through gradual heating.” Journal of Micromechanics and Microengineering, Vol.22, 2012
    [26] Kim, Dongjo et al. “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions.” Applied Physics Letters, Vol.89, 2016
    [27] Li, Yanan et al. “Rate-dependent interface capture beyond the coffee-ring effect.” Scientific Reports, Vol.6, 2016
    [28] Zhong, Xin et al. “From enhancement to elimination of dual-ring pattern of nanoparticles from sessile droplets by heating the substrate.” Applied Thermal Engineering, Vol.115, pp.1418-1423, 2017
    [29] Gupta, Vandana and Piyush Trivedi. “In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment.” 2018
    [30] Leary, James F.. “The Importance of Zeta Potential for Drug/Gene Delivery in Nanomedicine.” 2012
    [31] Huo, Wenlong et al. “Effect of zeta potential on properties of foamed colloidal suspension.” Journal of the European Ceramic Society, Vol.39, pp.574-573, 2019
    [32] Adair, James H. et al. “Surface and Colloid Chemistry.” 2001
    [33] Langford, Alex Jacob et al. “Suspension properties and characterization of aluminum-adjuvanted vaccines.” Practical Aspects of Vaccine Development, pp.225-266, 2022
    [34] Li, Jinjiang et al. “Impact of electroviscous effect on viscosity in developing highly concentrated protein formulations: Lessons from non-protein charged colloids.” International Journal of Pharmaceutics, Vol.1, 2018
    [35] Kruželák, Ján et al. “Progress in polymers and polymer composites used as efficient materials for EMI shielding.” Nanoscale Advances, Vol.3, pp.123 – 172, 2020
    [36] Gao, Ya-Nan et al. “Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding.” Chemical Engineering Journal, Vol.430, 2021
    [37] Zhang, Yali et al. “Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films.” Composites Science and Technology, Vol.183, 2019
    [38] Wang, Xiao-Yun et al. “Electromagnetic interference shielding materials: recent progress, structure design, and future perspective.” Journal of Materials Chemistry C, Vol.10, pp.44-72, 2022
    [39] Banerjee, Poulami et al. “Lightweight Epoxy-Based Composites for EMI Shielding Applications.” Journal of Electronic Materials, Vol.49, pp.1702 – 1720, 2019
    [40] Woo, Seongwon et al. “Formation of Silver Layer with a Multiporous Structure from Silver Nanoparticles for Highly Efficient Electromagnetic Interference Shielding Materials.” ACS Applied Nano Materials, Vol.6, 2023
    [41] Zhang, Jingyuan et al. “Flexible and ultra-thin silver films with superior electromagnetic interference shielding performance via spin-coating silver metal organic decomposition ink.” Materials Advances, Vol.3, pp.647-657, 2022
    [42] Yang, Ruijie et al. “Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes.” Nature Protocols, Vol.18, pp.555-578, 2022
    [43] Isaacson, Kyle J et al. “Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers.” Journal of controlled release : official journal of the Controlled Release Society, Vol.344, pp.39-49, 2022
    [44] Jonge, Niels de and Frances M. Ross. “Past, Present, and Future Electron Microscopy of Liquid Specimens.” Nature Nanotechnology, Vol.6, pp.695-704, 2016
    [45] Mirsaidov, Utkur M et al. “Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution.” MRS Bulletin, Vol.45, pp.704-712, 2020
    [46] Wang C. “Imaging Liquid Processes Using Open Cells in the TEM, SEM, and
    Beyond.” Cambridge University Press, Vol.22, pp.56-77, 2016
    [47] Pu, Shengda D. et al. “Liquid cell transmission electron microscopy and its applications.” Royal Society Open Science, Vol.7, 2020
    [48] Wilson, Brian K. and Robert K. Prud' homme. “Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles.” Journal of colloid and interface science, Vol.604, pp.208-220, 2021
    [49] Souza, T. G. F. et al. “A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles.” Journal of Physics: Conference Series, Vol.733, 2016
    [50] James, A. E. and Jeremy D. Driskell. “Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS).” The Analyst, Vol.138, pp.1212-1218, 2013
    [51] Weigert, Florian et al. “Combining HR-TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots.” Scientific Reports, Vol.10, 2020
    [52] Particle size analysis — Dynamic light scattering (DLS), ISO 22412:2017(E)
    [53] Oh, Chulmin et al. “Effect of oxygen on pressureless silver sintering in a nitrogen atmosphere.” Journal of Materials Science: Materials in Electronics, Vol.31, pp.488-494, 2019
    [54] Stetefeld, Jörg et al. “Dynamic light scattering: a practical guide and applications in biomedical sciences.” Biophysical Reviews, Vol.8, pp.409-427, 2016
    [55] Bhattacharjee, Sourav. “DLS and zeta potential - What they are and what they are not?” Journal of controlled release : official journal of the Controlled Release Society, Vol.235, pp.337-351, 2016
    [56] Raj, Shani et al. “Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes.” Scientific Reports, Vol.15, 2020
    [57] Upputuri, Paul Kumar et al. “Measurement of large discontinuities using single white light interferogram.” Optics express, Vol.22, pp.27373-27380, 2014
    [58] Truong, Thien. “Characterisation and Defect Engineering of Poly-Si Passivating Contacts in Silicon Solar Cells.” 2022
    [59] Wang, Xiao-Yun et al. “Electromagnetic interference shielding materials: recent progress, structure design, and future perspective.” Journal of Materials Chemistry C, Vol.10, pp.44-72, 2022
    [60] S. Rodrigues, M., Fiedler, P. “Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films.” Materials, Vol.13, 2020.
    [61] A. Javidjam, M. H. Hekmatshoar, “Effect of surface roughness on electrical conductivity and hardness of silver plated copper,” Materials Research Express, Vol.6, 2019.

    無法下載圖示 校內:2029-07-29公開
    校外:2029-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE