簡易檢索 / 詳目顯示

研究生: 林諦
Lin, Ti
論文名稱: 台灣PPP-RTK服務測試成果
Test Results of PPP-RTK Service in Taiwan
指導教授: 楊名
Yang, Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 精密單點定位即時動態定位狀態空間表示方法觀測空間表示方法
外文關鍵詞: Precise Point Positioning, Real Time Kinematic, Observation Space Representation, State Space Representation
相關次數: 點閱:156下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密單點定位-即時動態定位(Precise Point Positioning- Real Time Kinematic, PPP-RTK)為PPP與RTK結合,成為最新的衛星定位技術。PPP-RTK在其他國家已經成熟且運用於科技研究與工程實作等領域,如美國、歐洲、日本、澳大利亞等地區。PPP-RTK將PPP與網路RTK(Network RTK, NRTK)的優點結合,可以即時定位解算成果,獲得公分級定位精度。另外,NRTK與PPP-RTK兩者技術略有不同,重點在於NRTK使用觀測空間表示(Observation Space Representation, OSR),PPP-RTK使用狀態空間表示(State Space Representation, SSR),兩種不同方法提供GNSS校正服務。本研究在台灣測試PPP-RTK與NRTK的成果比對,總共有三天的資料。固定解的定位成果,PPP-RTK的固定解百分比為30.18%,NRTK的固定解百分比為99.80%。PPP-RTK之固定解RMS值為公分等級,NRTK之固定解 RMS值亦為公分等級,但是NRTK比PPP-RTK之固定解RMS值較低,因此NRTK仍然比PPP-RTK的定位性能好。另一方面,臺灣為中低緯度地區,觀測時間於春天4月至5月,電離層活躍較大。將電離層的TEC值分別對固定解百分比率與定位誤差RMS值做相關係數,得知NRTK定位成果與TEC值之間為低度線性相關,PPP-RTK定位成果與TEC值之間為中度線性相關。因此,電離層的TEC值多寡顯著影響PPP-RTK定位成果,尤其PPP-RTK定位在中午至下午無法收斂到固定解。本研究之PPP-RTK實驗成果與國外的PPP-RTK效能還有一段距離,未來期望PPP-RTK能夠進一步改善。

    Precise Point Positioning - Real Time Kinematic (PPP-RTK) is a combination of PPP and RTK, making it the latest satellite positioning technology. PPP-RTK is well established and used in other countries, such as the USA, Europe, Japan, and Australia, for scientific research and engineering work. PPP-RTK combines the benefits of PPP and Network RTK (NRTK) to achieve centimeter-level positioning accuracy with real-time positioning resolution results. In addition, NRTK and PPP-RTK are slightly different techniques, highlighting the fact that NRTK uses Observation Space Representation (OSR) and PPP-RTK uses State Space Representation (SSR). The two different methods provide GNSS calibration services. In this study, the results of PPP-RTK and NRTK were tested in Taiwan for a total of three days of data. The overall percentage of fixed solutions for PPP-RTK was 30.18%, and the overall percentage of fixed solutions for NRTK was 99.80%. The overall fixed solution positioning results are on a centimeter-level for PPP-RTK and a centimeter-level for NRTK. However, NRTK still provides better positioning performance than PPP-RTK. On the other hand, Taiwan is low to the mid-latitude area, where the ionosphere is more dynamic during the spring months of April and May. As a result, the amount of TEC in the ionosphere affects the PPP-RTK positioning results, especially as PPP-RTK positioning does not converge to a fixed solution between noon and afternoon. This PPP-RTK experiment is still a long way from the performance of PPP-RTK abroad, and it is hoped that PPP-RTK will improve and become widespread in Taiwan in the future.

    摘要 I Extended Abstract II 致謝 VII 目錄 VIII 圖目錄 X 表目錄 XII 第一章 研究主旨 1 1.1 研究背景 1 1.2 文獻回顧 4 1.3 研究動機與目的 9 第二章 GNSS定位原理 12 2.1 GNSS觀測量 12 2.1.1 虛擬距離觀測量 12 2.1.2 載波相位觀測量 13 2.2 GNSS觀測量誤差來源 14 2.2.1 衛星軌道誤差 14 2.2.2 時鐘誤差 15 2.2.3 電離層延遲量誤差 15 2.2.4 對流層延遲量誤差 16 2.2.5 多路徑效應 16 2.3 GNSS改正技術 17 2.3.1 OSR原理 17 2.3.2 SSR原理 19 2.3.3 OSR與SSR之比較 22 2.4 GNSS即時動態定位技術 23 2.4.1 NRTK定位原理 24 2.4.2 PPP定位原理 25 2.4.3 PPP-RTK定位原理 26 2.4.4 NRTK、PPP、PPP-RTK技術比較 26 2.5 國際間PPP-RTK改正服務:以PointPerfect為例 27 第三章 PPP-RTK定位計算方法 30 3.1 PPP-RTK定位計算 30 3.2 PPP-RTK定位計算之處理策略 34 第四章 實驗成果與分析 40 4.1 實驗工具 40 4.2資料處理流程 42 4.3 實驗資料 46 4.4 GNSS動態定位成果與分析 48 第五章 結論 63 參考文獻 65

    內政部土地測量局(2006),e-GPS衛星基準站即時動態定位系統。
    內政部國土測繪中心(2022)即時連線資訊,台中。Available at: https://egnss.nlsc.gov.tw/basestationinfo.aspx (Apr 27, 2022)
    CSNO.TARC.CN. (2022) 北斗系統狀態。Available at: http://www.csno-tarc.cn/system/constellation (Apr 27, 2022)
    European GNSS Agency (2019) PPP-RTK market and technology report. Available at: https://www.gsa.europa.eu/sites/default/files/calls_for_proposals/rd.03_-_ppp-rtk_market_and_technology_report.pdf (Apr 27, 2022)
    GLONASS.IAC.RU. (2022) GLONASS constellation status. Available at: https://www.glonass-iac.ru/en/sostavOG/ (Apr 27, 2022)
    GPS.GOV. (2022) Current and Future Satellite Generations. Available at: https://www.gps.gov/systems/gps/space/ (Apr 27, 2022)
    GSC.EUROPA.EU. (2022) Constellation Information. Available at: https://www.gsc-europa.eu/system-service-status/constellation-information (Apr 27, 2022)
    Hao, M., Jiao, W., Jia, X., & Tao, Q. (2020). Precise Point Positioning Performance Evaluation of QZSS Centimeter Level Augmentation Service. China Satellite Navigation Conference, LNEE, 652, 78-88.
    Hirokawa, R., Fernandez-Hernandez, I. (2020) Open Format Specifications for PPP/PPP-RTK Services: Overview and Interoperability Assessment. In: ION GNSS+ 2020, St. Louis, Mo.
    Leick, A., Rapoport, L., Tatarnikov, D. (2015) GPS satellite surveying, 4th edition. John Wiley & Sons, Inc., New Jersey.
    Li, X., Wang, B., Li, X., Huang, J., Lyu, H., & Han, X. (2022). Principle and performance of multi-frequency and multi-GNSS PPP-RTK. Satellite Navigation, 3(1), 1-11.
    Nadarajah, N., Khodabandeh, A., Wang, K., Choudhury, M., & Teunissen, P. J. (2018). Multi-GNSS PPP-RTK: from large-to small-scale networks. Sensors, 18(4), 1078.
    Niell, A. E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys Res, 101, 2337 - 3246
    QZSS.GO.JP. (2022) List of Positioning Satellites. Available at:https://qzss.go.jp/en/technical/satellites/index.html#QZSS (Apr 27, 2022)
    Ray, J., & Senior, K. (2005). Geodetic techniques for time and frequency comparisons using GPS phase and code measurements. Metrologia, 42(4), 215.
    RTCM Special Committee (2016) RTCM Standard 10403.3. Arlington, Virginia, USA.
    Sapcorda (2020) Safe position augmentation for real-time navigation (SPARTN) interface control document. Scottsdale. Available at: https://www.sapcorda.com/wp-content/uploads/2020/12/Sapcorda_Datasheet_V1.4.pdf (June 27, 2022)
    Schmitz, M. (2012) RTCM state space representation, messages, status and plans. In: PP-RTK & Open Standards Symposium, Frankfurt, Germany.
    Seeber, G. (2003) Satellite Geodesy (Second Edition). Walter de Gruyter, New York, U. S. A.
    Stephenson, S. (2016) Automotive applications of high precision GNSS. Available at: http://eprints.nottingham.ac.uk/38716/ (July 20, 2022)
    u-blox (2018) 9 things you should know about centimeter-level GNSS accuracy. Available at: https://content.u-blox.com/sites/default/files/u-blox_F9_customer_webinarII.pdf (June 27, 2022)
    u-blox (2021) Secure position augmentation for real-time navigation (SPARTN) interface control document version 2.0.1. Available at: https://www.spartnformat.org/wp-ontent/uploads/210928_SPARTN_v2.0.1.pdf (July 20, 2022)
    u-blox (2022) ZED-F9P-04B u-blox F9 high precision GNSS module. Data sheet. Available at: https://content.u-blox.com/sites/default/files/ZED-F9P-04B_DataSheet_UBX-21044850.pdf (July 20, 2022)
    Teunissen P.J.G. (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70, 65-82.
    Teunissen, P.J.G., Odijk, D., & Zhang, B. (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut, Astronaut, Aviat, 42(4), 223-230.
    Teunissen, P.J.G., Montenbruck, O. (2017) Handbook of global navigation satellite systems. Springer, Switzerland.
    Wübbena, G., Schmitz, M., Bagge, A. (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: ION GNSS-05, Long Beach, California.
    Wübbena, J.B., Wübbena, G. (2017) GNSMART 2.0. In: 4th EUPOS Technical Meeting, Bratislava, Slovakia.
    Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE