| 研究生: |
游博凱 You, Bo-Kai |
|---|---|
| 論文名稱: |
洪水脈衝下辮狀河川魚類棲地建模與分析 Fish Habitat Modeling and Analysis under Flood Pulses in a Braided River |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 魚類棲地建模 、洪水脈衝 、辮狀河川 、巴氏銀鮈 |
| 外文關鍵詞: | Fish Habitat Modeling, Flood pulse, Braided river, Squalidus banarescui |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣形狀狹長,中央山脈南北縱列,河川多呈東西向分佈,坡陡、流急是其主要特色。在水文條件上,北臺灣受季風影響,終年有雨;中、南臺灣降雨集中在春、夏,主要降雨來源為梅雨、颱風,因此河川在豐、枯水期間流量懸殊。巴氏銀鮈 (Squalidus banarescui) 為本研究目標物種,主要棲息於烏溪中下游段辮狀河川,其棲地於2023年、2024年豐水期受一系列洪水脈衝影響,對於棲息於辮狀河川的魚類而言,洪水脈衝所帶來的水文動態變化,是形塑棲地環境與魚類群落組成的主要因子。本研究聚焦烏溪流域中下游段辮狀河川的洪泛平原棲地,首先整合前人研究結果,同時增加濱水植生覆蓋率調查,基於模糊理論進行魚類棲地建模,藉以建立量化棲地品質評估系統,並在後續分析上輔以功能特徵、統計方法,探討在一系列洪水脈衝影響下,豐、枯水期間巴氏銀鮈棲地品質變化、與棲地內魚類群落的關聯性及棲地魚類群落組成。
研究結果顯示濱水植生覆蓋率、底質、水面寬、地表水及伏流水溶氧、地表水濁度,於巴氏銀鮈幼魚與成魚棲地品質具有顯著影響力。適度的濱水植生覆蓋率(5% ~ 15%)能有效提供魚隻利用,水面寬則為決定枯水期棲地續存條件。在各研究水域中,本研究發現溪尾大橋五號具備能支持巴氏銀鮈各生命階段生存的棲地條件,是巴氏銀鮈得以於此續存的主因;溪尾大橋二號則在2024年枯水期作為育幼所,提供幼魚生長。在功能特徵與統計方法上,巴氏銀鮈與具相似功能特徵之魚種(如中華花鰍)出現特性存在高度正相關;而在威脅方面,亦可能受到吳郭魚的潛在競爭與被捕食的壓力。豐、枯水期魚類群落變化中,典型對應分析與k-平均演算法說明部分魚種只在豐水期被紀錄且個體數量稀少,進一步驗證洪水脈衝促進魚類遷移與組成變化之理論。
Rainfall in central Taiwan is concentrated in spring and summer, resulting in significant flow differences between wet and dry seasons. This study focused on the central Taiwan gudgeon (Squalidus banarescui), which inhabits the floodplain habitats of the braided river sections in the mid-lower Wu River, and its habitat was influenced by a series of flood pulses during the wet seasons of 2023 and 2024. A fuzzy logic-based fish habitat model was developed to establish a quantitative assessment system for the habitat quality of S. banarescui. In addition, functional traits and statistical analyses were employed to investigate the spatiotemporal dynamics of habitat under flood pulses and their relationship to fish communities.
The results indicated that the cover ratio of riparian vegetation, substrate, wetted width, dissolved oxygen, and turbidity significantly affected the habitat quality of juvenile and adult S. banarescui. A moderate cover ratio of riparian vegetation (5% ~ 15%) supported habitat utilization, while the wetted width maintained habitats during the dry season. S. banarescui was strongly associated with species sharing similar functional traits (e.g., Cobitis sinensis). Notably, Zone 5 at Xiwei Bridge supported both life stages of S. banarescui, serving as a refuge for the species' persistence. Zone 2 at Xiwei Bridge also functioned as a nursery during the dry season of 2024. Seasonal movement in fish communities, identified by canonical correspondence analysis (CCA) and k-means clustering, supported the hypothesis that flood pulses drove fish movement and community restructuring.
Akaike, H. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. (1974).
Baxter, C. V., & Hauer, F. R.. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481. (2000).
Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
Becker, A., Cowley, P. D., & Whitfield, A. K. Use of remote underwater video to record littoral habitat use by fish within a temporarily closed South African estuary. Journal of Experimental Marine Biology and Ecology, 391(1-2), 161-168. (2010).
Boavida, I., Dias, V., Ferreira, M. T., & Santos, J. M. Univariate functions versus fuzzy logic: Implications for fish habitat modeling. Ecological engineering, 71, 533-538. (2014).
Bosserman, Robert W., and Rammohan K. Ragade. Ecosystem analysis using fuzzy set theory. Ecological Modelling, 16(2-4), 191-208. (1982).
Bovee, K. D., & Milhous, R. T. Hydraulic simulation in instream flow studies: theory and techniques (No. 5). Department of the Interior, Fish and Wildlife Service, Office of Biological Services, Western Energy and Land Use Team, Cooperative Instream Flow Service Group. (1978).
Bren, L. J. Riparian zone, stream, and floodplain issues: a review. Journal of Hydrology, 150(2-4), 277-299. (1993).
Bruton, M. N. The effects of suspensoids on fish. Hydrobiologia, 125(1), 221-241. (1985).
Bulbul Ali, A., & Mishra, A. Effects of dissolved oxygen concentration on freshwater fish: A review. International Journal of Fisheries and Aquatic Studies, 10(4), 113-127. (2022).
Burgazzi, G., Vezza, P., Negro, G., Astegiano, L., Pellicanó, R., Pinna, B., Viaroli, P. & Laini, A. Effect of microhabitats, mesohabitats and spatial position on macroinvertebrate communities of a braided river. Journal of Ecohydraulics, 6(2), 95-104. (2021).
Chalov, S. R., & Alexeevsky, N. I. Braided rivers: structure, types and hydrological effects. Hydrology Research, 46(2), 258-275. (2015).
Chen, I. S., & Chang, Y. C. A photographic guide to the inlandwater fishes of Taiwan: Cypriniformes. SueiChan Press. (2005).
Chen, I. S., & Chang, Y. C. Taxonomic revision and mitochondrial sequence evolution of the cyprinid genus Squalidus (Teleostei: Cyprinidae) in Taiwan with description of a new species. Raffles Bull Zool Suppl, 14, 69-76. (2007).
Chen, I. S., Jang-Liaw, N. H., Chang, Y. C., Zhang, V. W., & Shao, K. T. Threatened fishes of the world: Squalidus banarescui Chen and Chang, 2007 (Cyprinidae). Environmental biology of fishes, 88, 63-64. (2010).
Crook, D. A., Buckle, D. J., Morrongiello, J. R., Allsop, Q. A., Baldwin, W., Saunders, T. M., & Douglas, M. M. Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river. Journal of Animal Ecology, 89(3), 795-807. (2020).
de Nie, H. W. The decrease in aquatic vegetation in Europe and its consequences for fish populations. Rome, Italy: Food and Agriculture Organization of the United Nations. (1987).
De Winter, J. C., Gosling, S. D., & Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological methods, 21(3), 273. (2016).
Den Hartog, C., & Van der Velde, G. Structural aspects of aquatic plant communities. In Vegetation of inland waters (pp. 113-153). Dordrecht: Springer Netherlands. (1988).
Frimpong, E. A., & Angermeier, P. L. Fish traits: A database of ecological and life‐history traits of freshwater fishes of the United States. Fisheries, 34(10), 487-495. (2009).
Gajalakshmi, N., & Karunanithi, S. Role of recursive cubic spline interpolation method and convolution filter in image processing. In Journal of Physics: Conference Series (Vol. 1964, No. 2, p. 022027). IOP Publishing. (2021).
Gray, D., & Harding, J. S. Braided River ecology: a literature review of physical habitats and aquatic invertebrate communities. Science & Technical Pub., Department of Conservation. (2007).
Gray, D., Scarsbrook, M. R., & Harding, J. S. Spatial biodiversity patterns in a large New Zealand braided river. New Zealand Journal of Marine and Freshwater Research, 40(4), 631-642. (2006).
Gregory, S. V., Swanson, F. J., McKee, W. A., & Cummins, K. W. An ecosystem perspective of riparian zones. BioScience, 41(8), 540-551. (1991).
Henley, W. F., Patterson, M. A., Neves, R. J., & Lemly, A. D. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in fisheries science, 8(2), 125-139. (2000).
Hughes, F. M. Floodplain biogeomorphology. Progress in physical geography, 21(4), 501-529. (1997).
Jorde, K., Schneider, M., Peter, A., & Zoellner, F. Fuzzy based models for the evaluation of fish habitat quality and instream flow assessment. In Proceedings of the 3rd international symposium on environmental hydraulics. (Vol. 3, pp. 27-28). (2001).
Junk, W. J., Bayley, P. B., & Sparks, R. E. The flood pulse concept in river-floodplain systems. Canadian special publication of fisheries and aquatic sciences, 106(1), 110-127. (1989).
Kuo, P. H., Shih, S. S., & Otte, M. L. Restoration recommendations for mitigating habitat fragmentation of a river corridor. Journal of Environmental Management, 296, 113197. (2021).
Lane, E. W. A study of the shape of channels formed by natural streams flowing in erodible material (No. 9). US Army Engineer Division, Missouri River. (1957).
Lee, C. I., Wang, F. Y., Liu, M. Y., Chou, T. K., & Liao, T. Y. DNA metabarcoding for dietary analysis of Holland's carp (Spinibarbus hollandi) to evaluate the threat to native fishes in Taiwan. Journal of Fish Biology, 99(5), 1668-1676. (2021).
Leopold, L B., & Wolman, M.G. River channel patterns: braiding, meandering and straight. U.S. Geological Survey Professional Papers 262b: 39–85. (1957).
Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshwater biology, 41(2), 373-391. (1999).
Mamdani, E. H. Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the institution of electrical engineers (Vol. 121, No. 12, pp. 1585-1588). IEE. (1974).
McKinley, S., & Levine, M. Cubic spline interpolation. College of the Redwoods, 45(1), 1049-1060. (1998).
Miranda, L. E., & Pugh, L. L. Relationship between vegetation coverage and abundance, size, and diet of juvenile largemouth bass during winter. North American Journal of Fisheries Management, 17(3), 601-610. (1997).
Mouton, A. M., Schneider, M., Depestele, J., Goethals, P. L., & De Pauw, N. Fish habitat modelling as a tool for river management. Ecological engineering, 29(3), 305-315. (2007).
Muñoz‐Mas, R., Sánchez‐Hernández, J., Martínez‐Capel, F., Tamatamah, R., Mohamedi, S., Massinde, R., & McClain, M. E. Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa). Ecology of Freshwater Fish, 28(3), 473-484. (2019).
Naiman, R. J., & Decamps, H. The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28(1), 621-658. (1997).
Platts, W. S., Megahan, W. F., & Minshall, G. W. Methods for evaluating stream, riparian, and biotic conditions. Gen. Tech. Rep. INT-GTR-138. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 70 p., 138. (1983).
Rebekić, A., Lončarić, Z., Petrović, S., & Marić, S. Pearson's or Spearman's correlation coefficient-which one to use? Poljoprivreda, 21(2), 47-54. (2015).
Riis, T., Kelly-Quinn, M., Aguiar, F. C., Manolaki, P., Bruno, D., Bejarano, M. D., Clerici, N., Fernandes, M.R., Franco, J.C., Pettit, N., & Portela, A.P. Global overview of ecosystem services provided by riparian vegetation. BioScience, 70(6), 501-514. (2020).
Rizvi, S., Mitchell, J., Razaque, A., Rizvi, M. R., & Williams, I. A fuzzy inference system (FIS) to evaluate the security readiness of cloud service providers. Journal of cloud computing, 9(1), 42. (2020).
Ruslan, F. A., Zain, Z. M., & Adnan, R. Multiple Input Single Output (MISO) ARX and NARX model of flood prediction system: A comparative study. In 2013 IEEE International Conference on Control System, Computing and Engineering (pp. 254-258). IEEE. (2013).
Sabri, N., Aljunid, S. A., Salim, M. S., Badlishah, R. B., Kamaruddin, R., & Malek, M. A. Fuzzy inference system: Short review and design. Int. Rev. Autom. Control, 6(4) , 441-449. (2013).
Särndal, C. E., Swensson, B., & Wretman, J. Model assisted survey sampling. Springer Science & Business Media. (2003).
Schwartz, J. S., & Herricks, E. E. Fish use of stage-specific fluvial habitats as refuge patches during a flood in a low-gradient Illinois stream. Canadian Journal of Fisheries and Aquatic Sciences, 62(7), 1540-1552. (2005).
Tabacchi, E., Lambs, L., Guilloy, H., Planty‐Tabacchi, A. M., Muller, E., & Decamps, H. Impacts of riparian vegetation on hydrological processes. Hydrological processes, 14(16‐17), 2959-2976. (2000).
Takagi, T., & Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1), 116-132. (1985).
Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167-1179. (1986).
Togaki, D., Inoue, M., Shiota, Y., Fujimi, Y., & Kawanishi, R. Route selection by fish during post-spate movement in a braided river: a potential effect on local assemblages. Limnology, 23(1), 127-136. (2022).
Valett, H. M., Fisher, S. G., & Stanley, E. H. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society, 9(3), 201-215. (1990).
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. The river continuum concept. Canadian journal of fisheries and aquatic sciences, 37(1), 130-137. (1980).
Villéger, S., Brosse, S., Mouchet, M., Mouillot, D., & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquatic Sciences, 79(4), 783-801. (2017).
Wang, C., Jiang, Z., Zhou, L., Dai, B., & Song, Z. A functional group approach reveals important fish recruitments driven by flood pulses in floodplain ecosystem. Ecological Indicators, 99, 130-139. (2019).
Wang, J., Song, X., Zou, G., & Zhou, W. Effects of aquatic vegetation on fish assemblages in a freshwater river of Taihu Lake Basin, East China. Journal of Water Resource and Protection, 5(1), 37-45. (2013).
Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. Riverine landscape diversity. Freshwater biology, 47(4), 517-539. (2002).
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zadeh, L. A. Fuzzy logic. Computer, 21(4), 83-93. (1988).
Zadeh, L. A., Klir, G. J., & Yuan, B. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers (Vol. 6). World scientific. (1996).
方偉達、周睿鈺,河川續動與洪泛脈動:探討河域生態學之演進觀念,國立台灣大學建築與城鄉研究學報,(14),69-80,(2007)。
王永珍、梁昇,辮狀河川生物棲地之水理與地形因素探討,水土保持學報,35(4),331-344,(2003)。
王時鼎、鄭俠、趙友夔,臺灣天氣變化之自然季節,大氣科學,11(1),101-120,(1984)。
呂映昇,物理環境因子與魚類棲地喜好度之關係-多變量分析之應用,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/7mbb26,(2009)。
周銘泰、高瑞卿、張瑞宗、廖竣,臺灣淡水及河口魚蝦圖鑑,(2020)。
邵廣昭,臺灣魚類資料庫網路電子版 http://fishdb.sinica.edu.tw,(2025-6-12)。
阿利伯克有限公司,烏溪水系水域關注物種之生態措施及棲地調查,經濟部水利署第三河川分署,(2023)。
張仲維,烏溪辮狀河段的魚類棲地時空變異與利用,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/z5ug94,(2024)。
張桓旋,應用個體生態矩陣及類神經網路模擬溪流棲地之概況,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/d5ws8k,(2014)。
陳義雄、方力行,台灣淡水及河口魚類誌,國立海洋生物博物館,(1999)。
黃秉弘,烏溪高灘地水域棲地特性與魚類群落之關係,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/6rkuaf,(2023)。
楊正雄、曾子榮、林瑞興、曾晴賢、廖德裕,2017臺灣淡水魚類紅皮書名錄,行政院農業委員會特有生物研究保育中心,(2017)。
楊佳寧、郭鎮維、游牧笛、沈淑敏,臺灣河川流域區,地形分段與類群的建構與分析. 中華水土保持學報,53(1),13-24,(2022)。
楊健廷,考量棲地品質及人類需求目標於水庫最佳化操作,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/dzrhcp,(2023)。
葉振峰、葉信富、李振誥,以 Mann-Kendall 及 Theil-Sen 檢定法評估臺灣地區長期河川流量長期時空趨勢變化,2015 年中華水土保持學會年會及學術研討會論文集,1-14,(2015)。
臺中市野生動物保育學會,109年度烏溪水系巴氏銀鮈分佈監測計畫期末報告,行政院農業委員會林務局,(2020)。
臺中市野生動物保育學會,111年度烏溪水系巴氏銀鮈分布監測計畫,行政院農業委員會林務局,(2023)。
顏宏哲,水利第17期,經濟部水利署(台北辦公區),(2007)。
蘇瑋哲,魚類個體生態矩陣於溪流棲地模擬之應用,國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/4hp57e,(2008)。
校內:2027-07-31公開