簡易檢索 / 詳目顯示

研究生: 黃妃禾
Huang, Fei-Ho
論文名稱: 利用奈米金材料/自組裝單層膜修飾微電極發展感測多巴胺之電化學無線系統
Development of Wireless Electrochemical Sensing System for Dopamine MonitoringUsing Nano-gold Materials/Self-assembled Monolayers Modified Microelectrodes
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 34
中文關鍵詞: 帕金森氏症多巴胺安培法電化學感測微小電極無線傳輸
外文關鍵詞: Parkinson’s disease, Dopamine, Amperometry, Electrochemical sensor, Microelectrodes, Radio frequency
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症起因於中腦黑質體(substantianigra)的多巴胺神經元缺失,並顯示出肌肉僵直、震顫和行動障礙。針對帕金森氏症動物模型,體內多巴胺的電化學量測可提供監測多巴胺損耗之證據,但卻面臨腦中大量抗壞血酸(ascorbic acid)的干擾,因其同樣具有相似的電化學特性。在本研究中,我們提出: 1.利用金奈米粒子與自組裝單層膜進行修飾自行設計的微電極,以改善體內多巴胺量測的靈敏性和達到專一性排除抗壞血酸之干擾。2.為達到即時記錄大鼠腦部多巴胺濃度之效果,以安培法之原理研發微型化之電化學紀錄無線系統。
    針對ω-mercaptoalkane carboxylic acid選擇最佳的烷基鏈長度,體外實驗顯示金奈米粒子和11-巰基十一酸(11-mercaptoundecanoic acid)修飾白金微電極對於多巴胺的檢測靈敏性的確大幅提升。藉由安培法的量測,11-巰基十一酸/金奈米粒子對抗壞血酸之抗干擾性有改善效果;此外,11-巰基十一酸/金奈米粒子具有許多的感測特性包括快速反應時間(少於2秒)、低檢測極限(100nM)、良好再現性之特點。並進一步對體外實驗進行系統驗證,以11-巰基十一酸/金奈米粒子的微電極,配合本自製系統可以偵測到在電位0.13伏特(以Ag/AgCl電極為參考電極)可觀察到一明顯峰電流,且伴隨連續多巴胺的添加可獲得成比例增加的趨勢。
    為證實體內多巴胺量測的可行性,藉由施打多巴胺回收的抑制劑(nomifensine)加以誘發多巴胺釋放,而11-巰基十一酸/金奈米粒子修飾微電極已成功應用於麻醉大鼠紋狀體 (striatum)中,進行植入式檢測。
    透過此實驗可證實所設計的微電極結合系統微小無線傳輸對於植入式、即時性監測多巴胺變化具有可行性,未來可應用於帕金森氏症的新穎治療模式,進行其療效之探討。此金奈米粒子/自組裝單層膜方法將延伸至對於SU-8基質所製備的可彎曲式感測電極進行表面改質,於帕金森氏症大鼠提供長期性的多巴胺量測,針對帕金森氏症病患管理而進行的各種治療,釐清其由皮質可塑性至多巴胺神經元之間所產生的調節性療效。

    Parkinson’s disease (PD) is known to be caused by insufficient release of dopamine (DA). Recording the DA level of animal’s brain could provide a direct evidence for evaluating novel treatments for PD in the acute or long-term studies. However, detection of DA in the biological system with high selectivity and sensitivity has been great challenge in electroanalytical research. Thus, there is a great need to develop a novel electrochemical method to selectively detect DA in neural extracellular fluids of rat brain tissue especially during freely moving condition.
    In order to improve the selectivity of DA sensing, this study of utilizesself-assembly monolayers (SAMs) for providing a simple and convenient method to functionalize the chemical properties of electrode-electrolyte interface. Suchalkanethiol compound constructs the negatively charged monolayers to provide the specific DA detection among competing L-ascorbic acid interferences. Moreover, the large sensing area of three-dimensional gold nanodendrite (Au-DT) is formed by electrodeposition, which possesses good sensitivity and faster electrons for real-time monitoring purposes for microelectrodes. Using amperometric i–t measurement, in vitro tests have shown that the responsive current of the platinum microelectrode coated with Au-DT and 11-mercaptoundecanoic acid (MUA) linearly depends on DA over the range of 0.1–1μM with a sensitivity of 0.377 nA/μM at fast response time of less than 2s.
    Furthermore, the dopamine signal can be measured using amperometry technique which has been verified in acute animal model. The developed dopamine system can be transmitted in a wireless model which could be a useful experimental tool for continuous monitoring of dopamine levels for investigating PD treatment in freely moving rat.Our ultimate goal is to apply the wireless miniature DA sensing unit for in-vivo DA recording as a direct evidence and evaluation tool for novel treatment such as transcranial direct current stimulation (tDCS) treatment for PD animal study.

    中文摘要...i Abstract...iii 致謝...v Contents...vi List of Figures and Tables...viii Chapter 1 Introduction...1 1.1.Introduction to Parkinson’s disease and treatments...1 1.2.Significance and manipulation of DA monitoring...2 1.2.1 In vivo DA detections with microdialysis...2 1.2.2 In vivo DA detections with electroanalytical methods ...3 1.3. Approaches of electrochemical measurement...6 1.3.1 Voltammetry...6 1.3.2 Amperometry...7 1.4. Applications of modified techniques in DA sensing electrodes...8 1.4.1 Self-assembled monolayer (SAM)...9 1.4.2 Nano-gold materials...9 1.5. Motivation and the aims of this study...10 Chapter 2 Materials and Methods...12 2.1. SAM/Au-DT modified electrodes...12 2.2. Characteristics of in vitro DA detections with microelectrodes...13 2.3. Wireless electrochemical recording system setup...14 2.4. Surgical procedures and system setup for in vivo DA recording...17 Chapter 3 Results...19 3.1. SAM/Au-DT modified macroelectrodes...19 3.1.1 Electrochemical response of MUA/Au-DT modified macroelectrodes...19 3.1.2 Surface structure of 3D Au-DT sensing electrode...20 3.1.3 Validation of Au-DT electrodeposition...21 3.2. In vitro DA detections of MUA/Au-DT modified electrodes ...22 3.2.1 Characterizations of specific DA detections with MUA/Au-DT...22 3.2.2 Comparison for selectivity of amperometric DA detections at Au-DT and MUA/Au-DT modified macroelectrodes ...23 3.2.3 Characteristics of amperometric DA detections with MUA/Au-DT modified microelectrodes...24 3.3. Electrochemical Recording System...26 3.3.1 Design of electrochemical recording system...26 3.3.2 Amperometric DA detection with self-designed DA sensing system...27 3.4. DA recording in cerebral striatum of anesthetized rats ...28 Chapter 4 Discussion and Conclusions...30 References...32

    Castro SSL, Mortimer RJ, De Oliveira MF, Stradiotto NR (2008) Electrooxidation and determination of dopamine using a Nafion®-cobalt hexacyanoferrate film modified electrode. Sensors 8:1950-1959.
    Codognoto L, Winter E, Paschoal JAR, Suffredini HB, Cabral MF, Machado SAS, Rath S (2007) Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers. Talanta 72:427-433.
    Cooper JR, Bloom FE, Roth RH (2002) The biochemical basis of neuropharmacology: Oxford University Press, USA.
    Crespi F (2010) Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats. Biosensors and Bioelectronics 25:2425-2430.
    Crespi F, Dalessandro D, Annovazzi-Lodi V, Heidbreder C, Norgia M (2004) In vivo voltammetry: from wire to wireless measurements. Journal of Neuroscience Methods 140:153-161.
    Dalmia A, Liu C, Savinell R (1997) Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamine. Journal of Electroanalytical Chemistry 430:205-214.
    Ding SJ, Chang BW, Wu CC, Lai MF, Chang HC (2005) Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes. Anal Chim Acta 554:43-51.
    Emborg ME (2004) Evaluation of animal models of Parkinson's disease for neuroprotective strategies. Journal of Neuroscience Methods 139:121-143.
    Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV (2004) Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. Journal of Neuroscience Methods 140:103-115.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354-359.
    Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta 598:181-192.
    Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147-150.
    Huan TN, Ganesh T, Kim KS, Kim S, Han SH, Chung H (2011) A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing. Biosensors and Bioelectronics 27:183-186.
    Jeong H, Jeon S (2008) Determination of dopamine in the presence of ascorbic acid by nafion and single-walled carbon nanotube film modified on carbon fiber microelectrode. Sensors 8:6924-6935.
    Johnson MD, Franklin RK, Gibson MD, Brown RB, Kipke DR (2008) Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. Journal of Neuroscience Methods 174:62-70.
    Kagohashi M, Nakazato T, Yoshimi K, Moizumi S, Hattori N, Kitazawa S (2008) Wireless voltammetry recording in unanesthetised behaving rats. Neuroscience Research 60:120-127.
    Kang TF, Shen GL, Yu RQ (1997) Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Analytica chimica acta 354:343-349.
    Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622-626.
    Malem F, Mandler D (1993) Self-assembled monolayers in electroanalytical chemistry: application of. omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Analytical Chemistry 65:37-41.
    Michael AC, Borland LM (2006) Electrochemical methods for neuroscience: CRC.
    Nitsche MA, Paulus W (2011) Transcranial direct current stimulation–update 2011. Restorative Neurology and Neuroscience 29:463-492.
    Njagi J, Chernov MM, Leiter J, Andreescu S (2010) Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Analytical Chemistry 82:989-996.
    O'Neill RD (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. Analyst 119:767-779.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates: Academic press.
    Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chemical Reviews 108:2554.
    Rogers MW (1996) Disorders of posture, balance, and gait in Parkinson's disease. Clinics in Geriatric Medicine 12:825.
    Suaud-Chagny M-F (2004) In vivo monitoring of dopamine overflow in the central nervous system by amperometric techniques combined with carbon fibre electrodes. Methods 33:322-329.
    Tsai T-C, Guo C-X, Han H-Z, Li Y-T, Huang Y-Z, Li C-M, Chen J-JJ (2012) Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine. Analyst 137:2813-2820.
    Wang Q, Dong D, Li NQ (2001) Electrochemical response of dopamine at a penicillamine self-assembled gold electrode. Bioelectrochemistry 54:169-175.
    Xiao Y, Guo C, Li CM, Li Y, Zhang J, Xue R, Zhang S (2007) Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Analytical Biochemistry 371:229-237.
    Zachek MK, Takmakov P, Moody B, Wightman RM, McCarty GS (2009) Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Analytical Chemistry 81:6258-6265.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633-639.
    Zhang MY, Beyer CE (2006) Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 40:492-499.

    無法下載圖示 校內:2015-02-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE