| 研究生: |
陳俊偉 Chen, Chun-Wei |
|---|---|
| 論文名稱: |
應用盒鬚圖從小樣本資料中學習 Applying Box-and-Whisker Plots for Learning from Small Datasets |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 小樣本學習 、資訊擴散 、盒鬚圖 、虛擬樣本 、倒傳遞類神經網路 |
| 外文關鍵詞: | small dataset, information diffusion, box-and-whisker plots, artificial samples, back-propagation neural network |
| 相關次數: | 點閱:142 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在越來越嚴苛的全球化競爭壓力下,產品生命週期變得越來越短。因此,如何運用試產階段所得到之樣本數很小的資訊,來縮短生產週期、建立穩定的知識模式,於近年來已是重要的議題。機器學習演算法被廣泛應用於這樣的課題,然而訓練樣本的數量始終為決定其資訊獲取能力的關鍵因素。因此本研究以盒鬚圖為基礎,先推估資料各屬性的可能值域範圍,再使用啟發式的機制產生虛擬值,以系統性的方法產生更多虛擬樣本,藉以提昇類神經網路之學習效果。本研究以兩組業界資料進行實驗,比較加入虛擬樣本前、後的預測準確率。實驗結果顯示,本研究所產生的虛擬樣本確實能有效改善倒傳遞類神經網路的學習效果。
Product life cycles are becoming shorter and shorter owing to the increasing pressure of global competition. However, companies may dominate their target market if they can shorten their production cycle time by using the knowledge obtained in the pilot runs, where the sample sizes are usually very small, to accelerate their new products coming to market. Machine learning algorithms are widely applied to this task, but the number of training samples is always a key factor in determining their knowledge acquisition capability. Therefore, this study employs the box-and-whisker plots to estimate the domain bounds of a group of observations for sample generation to help the learning tasks. In the experiments, two practical datasets acquired from production pilot runs are examined for the proposed procedure, and the results show that the performance of back-propagation neural networks can be improved significantly.
黃漢申 (2003)。從稀少資料學習:一個貝氏網路參數學習的方法。博士論文,國立臺灣大學資訊工程學研究所。
葉怡成 (2003)。類神經網路模式應用與實作。台北市:儒林。
Anthony, M. H. G., and Biggs, N. (1997). Computational learning theory. Cambridge University Press.
Chan, K. Y., Kwong, C. K., and Tsim, Y. C. (2010). A genetic programming based fuzzy regression approach to modelling manufacturing processes. International Journal of Production Research, 48(7), 1967-1982.
Guo, G. D., and Dyer, C. R. (2005). Learning from examples in the small sample case: Face expression recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 35(3), 477-488.
Huang, C. F. (1997). Principle of information diffusion. Fuzzy Sets and Systems, 91(1), 69-90.
Huang, C. F., and Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
Hong, T. P., Tseng, L. H., and Chien, B. C. (2010). Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications, 37(3), 2644-2653.
Ivănescu, V. C., Bertrand, J. W. M., Fransoo, J. C., and Kleijnen, J. P. C. (2006). Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57(1), 2-9.
Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685.
Jennrich, R. I., and Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805-820.
Kuo, Y., Yang, T., Peters, B. A., and Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015.
Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963-974.
Lanouette, R., Thibault, J., and Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), 1167-1176.
Li, D. C., Chang, F. M., and Chen, K. C. (2010a). Building reliability growth model using sequential experiments and the Bayesian theorem for small datasets. Expert Systems with Applications, 37(4), 3434-3443.
Li, D. C., Chen, L. S., and Lin, Y. S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
Li, D., Gu, H., and Zhang, L. Y. (2010). A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Systems with Applications, 37(10), 6942-6947.
Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., and Hu, S. C. (2007a). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424.
Li, D. C. and Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
Li, D. C., Liu, C. W., Fang, Y. H., and Chen, C. C. (2010b). A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. International Journal of Production Research, 48(18), 5481-5496.
Li, D. C., Tsai, T. I., and Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: Case study. International Journal of Production Research, 47(1), 51-69.
Li, D. C., Wu, C. S., Tsai, T. I., and Chang, F. M. (2006). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869.
Li, D. C., Wu, C. S., Tsai, T. I., and Lina, Y. S. (2007b). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
Niyogi, P., Girosi, F., and Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
Oniśko, A., Druzdzel, M. J., and Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2), 165-182.
Schervish, M. (1995). Probabilistic inference and inference diagrams. Operations Research, 36, 589-604.
Thomas, M., Kanstein, A., and Goser, K. (1997). Rare fault detection by possibilistic reasoning. Computational Intelligence - Theory and Applications, 1226, 294-298.
Tukey, J. W. (1977). Exploratory data analysis, Reading (MA): Addison-Wesley.
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory (2nd ed.). New York: Springer-Verlag.
Wang, Y. (2003). On-demand forecasting of stock prices using a real-time predictor. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1033-1037.
Wang, Y., Song, Q., MacDonell, S., Shepperd, M., and Shen, J. (2009). Integrate the GM(1,1) and verhulst models to predict software stage effort. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 39(6), 647-658.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.