| 研究生: |
羅義凱 Luo, Yi-Kai |
|---|---|
| 論文名稱: |
備援系統之最適結構設計與維修保養策略 Optimal Structural Designs and Maintenance Policies for Standby Systems |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 備援系統 、維修保養策略 、常數損壞速率 、可用度 |
| 外文關鍵詞: | Standby system, Maintenance policy, Availability, Constant failure rate |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,在連續操作的程序中多半的關鍵單元上會安裝備援系統,其目的是確保程序運行不中斷,而完整的備援設施包括了是由為感測器、切換裝置及暖備件。由於這些元件皆會有損壞的機率,因此整個系統的可用度與各元件的配置及維修保養策略息息相關。本研究之首要工作就是開發備援系統之超結構,並據以推導出可產生最佳備援配置及維修制度之數學規劃模式。具體而言,我們可從最適解中決定出(1)每一感測管道的線上元件數目、投票閘形式及備件數目,(2)切換裝置的備件數及檢測週期,以及(3)暖備件的冷備件數目及檢測週期。此外,本論文也提供兩個實際案例(幫浦及風扇系統)來闡明上述模式的應用步驟,並展示其可行性與有效性,最後,我們也推導出多層備援相應限制式,以供未來進一步研究的應用。
Generally speaking, every important processing unit in a continuous chemical process must always function normally, and a process interlock is a protective device that maintains the uninterrupted operation in each of them For example, the uninterrupted fluid flow in a particular pipeline may be ensured with a system of running and standby pumps interconnected with switches in such an interlock. Although a rigorous mathematical programming model has already been developed to configure the safety interlocks and their maintenance policies, it cannot be directly applied to the aforementioned process interlocks. Our primary objective in the present study is to address this issue by modifying the existing model on the basis of a superstructure. From the optimum solution, one can obtain the following specifications: (1) the number of online sensors (2) the number of spares sensor (3) switch inspection intervals, (4) the number of spare switches, (3) the warm standbys inspection intervals, and (4) the number of cold standbys. Finally, the application results obtained in two examples, i.e., pump and fan, will be reported in detail in this presentation.
Badia, F. G., Berrade, M. D., & Campos, C. A. (2001). Optimization of inspection intervals based on cost. Journal of Applied Probability, 38(4), 872-881.
Clavareau, J., & Labeau, P. E. (2009). Maintenance and replacement policies under technological obsolescence. Reliability engineering & system safety,94(2), 370-381.
Hellmich, M., & Berg, H. P. (2015). Markov analysis of redundant standby safety systems under periodic surveillance testing. Reliability Engineering & System Safety, 133, 48-58.
Høyland, A., & Rausand, M. (1994). System reliability theory: models and statistical methods. John Wiley & Sons.
Kletz, T. A. (1986). HAZOP & HAZAN, 2nd edition (Institution of Chemical Engineers, Rugby, UK).
Levitin, G., Xing, L., & Dai, Y. (2014a). Optimal component loading in 1-out-of-N cold standby systems. Reliability Engineering & System Safety, 127, 58-64.
Levitin, G., Xing, L., & Dai, Y. (2014b). Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems. European Journal of Operational Research, 234(1), 155-162.
Lepar, Y. Y., & Chang, C. T. (2016). Automatic Generation of Multi-Channel Interlock Structures and Maintenance Policies Using Genetic Algorithms. (master’s thesis). National Cheng Kung University, Tainan, Taiwan.
Lepar Y. Y., Wang Y. C., & Chang C. T. (2016). Automatic Generation of Interlock Designs Using Genetic Algorithms. Comput. & Chem. Engng. (submitted).
Lipták, B. G. (1987). Optimization of Unit Operations. CRC Press.
Lai, C. A., Chang, C. T., Ko, C. L., & Chen, C. L. (2003). Optimal sensor placement and maintenance strategies for mass-flow networks. Industrial & engineering chemistry research, 42(19), 4366-4375.
Liang, K. H., & Chang, C. T. (2008). A simultaneous optimization approach to generate design specifications and maintenance policies for the multilayer protective systems in chemical processes. Industrial & Engineering Chemistry Research, 47(15), 5543-5555.
Liao, Y. C., & Chang, C. T. (2010). Design and Maintenance of Multichannel Protective Systems. Industrial & Engineering Chemistry Research, 49(22), 11421-11433.
Nakagawa, T. (1977). A 2-unit repairable redundant system with switching failure. IEEE Transactions on Reliability, 2, 128-130.
Nakagawa, T., & Osaki, S. (1974). Stochastic Behaviour Of A Two-Unit Standby Redundant System*. INFOR: Information Systems and Operational Research, 12(1), 66-70.
Pan, J. N. (1997). Reliability prediction of imperfect switching systems subject to multiple stresses. Microelectronics Reliability, 37(3), 439-445.
Raje, D. V., Olaniya, R. S., Wakhare, P. D., & Deshpande, A. W. (2000). Availability assessment of a two-unit stand-by pumping system. Reliability Engineering & System Safety, 68(3), 269-274.
Tsai, C. S., & Chang, C. T. (1996). A statistics based approach to enhancing safety and reliability of the batch-reactor charging operation. Computers & chemical engineering, 20, S647-S652.
Tsai, C. S., Chang, C. T., Yu, S. W., & Kao, C. S. (2000). Robust alarm generation strategy. Computers & Chemical Engineering, 24(2), 743-748.
Vaurio, J. K. (1999). Availability and cost functions for periodically inspected preventively maintained units. Reliability Engineering & System Safety, 63(2), 133-140.
Wang, Y. C., & Chang, C. T. (2015). On Optimal Assignment of Cold Standby Components for Multi-Channel Safety Interlocks. (master’s thesis). National Cheng Kung University, Tainan, Taiwan.
Wibisono, E., Adi, V. S. K., & Chang, C. T. (2014). Model Based Approach To Identify Optimal System Structures and Maintenance Policies for Safety Interlocks with Time-Varying Failure Rates. Industrial & Engineering Chemistry Research, 53(11), 4398-4412.
Wu, Q., & Wu, S. (2011). Reliability analysis of two-unit cold standby repairable systems under Poisson shocks. Applied Mathematics and computation,218(1), 171-182.
Yun, W. Y., & Cha, J. H. (2010). Optimal design of a general warm standby system. Reliability Engineering & System Safety, 95(8), 880-886.
Zhang, T., Xie, M., & Horigome, M. (2006). Availability and reliability of k-out-of-(m+n): g warm standby systems. Reliability Engineering & System Safety,91(4), 381-387.
Zhong, C., & Jin, H. (2014). A novel optimal preventive maintenance policy for a cold standby system based on semi-Markov theory. European Journal of Operational Research, 232(2), 405-411.
校內:2026-07-01公開