| 研究生: |
邱政修 Chiu, Cheng-Hsiu |
|---|---|
| 論文名稱: |
使用探空氣球進行大氣直流電場量測 The measurement of atmospheric DC electric field by Sounding Balloon |
| 指導教授: |
陳炳志
Chen, Bing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空天文與電漿科學研究所 Institute of Space, Astrophysical and Plasma Sciences(ISAPS) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電場量測 、探空氣球 、閃電 、高空短暫發光現象 |
| 外文關鍵詞: | Electric field measurement, Sounding balloon, Lightning, Transient Luminous Event |
| 相關次數: | 點閱:119 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣垂直電場在大域電路及各種高空短暫發光現象形成機制的理論模型中,扮演著重要的角色。本論文的目標在發展實驗方法,於30公里高度內中進行大氣垂直電場的實地量測,進而瞭解雲層電荷分佈與電位變化。我們設計了一套垂直電場電位計,量測已知間距兩端點的電壓差,就可以得到電場大小,並且我們也設計製作了一套平板校正電場,完成電場電位計的實驗室內校正與測試。在本論文中,我們使用探空氣球做為飛行載具,氣象探空氣球可以將1公斤級的酬載儀器送到30公里高空。我們也同時發展了輕型的航電系統,配合垂直電場電位計電位,用來量測不同高度時的垂直電場,以及環境氣象資訊。在2012年5月31日於台東所進行的飛行實驗中,探空氣球飛掠了一個發展中的對流系統,成功的取得了大氣垂直電場的數據與溫、溼度資料,經由分析,我們觀測到高空電場值大小隨著高度上升呈現指數衰減的情形,並且也觀測到雲層間電荷排列的層狀結構,以及在劇烈擾動區內,因為電荷無法有效的分離因而產生高度電中性的現象,而在對流系統附近電場值有明顯的變化。
The atmospheric electric field plays an important role in the theoretical models of the global electric circuit and the various types of the transient luminous events. In this thesis work, we develop a new experiment method to have an in-situ measurement of the vertical electric field up to the altitude of 30km to explore its spatial and temporal variation and the charge distribution. A lightweight electric field meter (EFM) is developed to measure the potential difference between two probes with a fixed distance and the electric field is derived directly by its definition. An in-lab facility with two parallel slabs to produce uniform electric field is designed carefully for the purpose of the calibration and test of the EFM. The metrological balloon is used as the flight carrier to deliver a 1kg-class payload to 30km height. We also develop compact and lightweight aviation electronics to obtain ambient metrological parameters. The results of the flight in May 31, 2012 are analyzed and reported in this thesis. The electric field meter flied over a growing convection system and measured the vertical electric field as well as ambient temperature, humidity, and magnetic field vector successfully. An exponential-decaying background electric field with altitude is observed. And we also identify several layer-distributed charges in different height, and the electric field become electrically neutral in the turbulent zone due the difficulty of the charge separation. A significantly variation of the electric field is also identified in the proximity of the convection system.
A. C. Aikin, and N. C. Maynard, (1990), A van de graaf source mechanism for middle atmospheric vertical electric fields. J. Atmos. Terr. Phys., 52, 695-705.
E. A. Benbrook, J. W. Kern, and W. R. Sheldon, (1974), Measured electric field in the vicinity of a thunderstorm at an altitude of 37km. J. Geophys Res., 79, 5289-5294.
E. A. Bering, T. J. Rosenberg, J. R. Benbrook, D. Detrick, D. L. Matthews, M. J.
Rycroft, M. A. Saunders, and W. R. Sheldon, (1980), Electric fields, electron precipitation, and VLF radiation during a simultaneous magnetospheric substorm and atmospheric thunderstorm. J. Geophys Res., 85, 55-72.
W. L. Boeck, O. H. Vaughan, Jr., R. Blakslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99-102.
A. B. Chen, C. L. Kuo, Y. J. Lee, H. T. Su, R. R. Hsu, J. L. Chern, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, Y. S. Chang, T. Y. Liu, and L. C. Lee (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.
R. C. Franz, R. J. Nemzek, and J. R. Winckler (1990), Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 48, doi: 10.1126/science.249.4964.48.
H. Fukunishi, Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons, (1996), Elves: lightning‐induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16), 2157–2160, doi:10.1029/96GL01979.
H. U. Frey, S. B. Mende, S. A. Cummer, A. B. Chen, R. R. Hsu, H. T. Su, Y. S. Chang, T. Adachi, H. Fukunishi, and Y. Takahashi (2005), Beta-type stepped leader of elve-producing lightning, Geophys. Res. Lett., 32, L13824, doi:10.1029/2005GL023080.
O. H. Gish, (1944), Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Elec., 49, 159-68.
O. H. Gish, and G.R. Wait, (1950), Thunderstorms and the Earth’s general electrification. J. Geophys. Res., 55, 473-84.
V. S. Glukhov, and U. S. Inan, (1996), Particle simulation of the time-dependent interaction with the ionosphere of rapidly varying lightning EMP. Geophys. Res. Lett.,23, 2193, 1996.
W. W. Hager, B. C. Aslan, R. G. Sonnenfeld, T. D. Crum, J. D. Battles, M. T. Holborn, and R. Ron, (2010), Three-dimensional charge structure of a mountain thunderstorm. J. Geophys. Res., 115, D12119, doi: 10.1029/2009JD013241.
L. C. Hale, (2002), Origin of big DC electric fields in the mesosphere. Adv. Space Res., 30, 2607-2612.
H. Hu, Global and local electrical phenomena in the stratosphere. PhD thesis, Univ.
of Washington, Geophysics Program, Seattle, Washington, 1994.
R. H. Holzworth, and F. S. Mozer, (1979), Direct evidence of solar flare modification of stratospheric electric fields. J. Geophys. Res., 84, 363-367.
R. H. Holzworth, K. W. Norville, P. M. Kintner, and S.P. Powell, (1986), Stratospheric conductivity variations over thunderstorms. J. Geophys. Res., 91, 13257-13263.
R. H. Holzworth, (1991), Conductivity and electric field variations with altitude in the stratosphere. J. Geophys. Res., 96, 12857-12864.
R. H. Holzworth and E.A. Bering, (1998), Ionospheric electric fields from stratospheric balloon-borne probes. In Measurement Techniques in Space Plasmas: Fields, volume Geophysical Monograph, 103, pages 79-84. American Geophysical Union.
R. H. Holzworth, E. A. Bering III, M. F. Kokorowski, E. H. Lay, B. Reddell, A. Kadokura, H. Yamagishi, N. Sato, M. Ejiri, H. Hirosawa, T. Yamagami, S. Torii, F. Tohyama, M. Nakagawa, T. Okada, and R. L. Dowden, (2005), Balloon observations of temporal variation in the global circuit compared to global lightning activity. Adv. Space Res., 35, 2223-2228.
U. S. Inan, T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett., 18(4), 705–708, doi:10.1029/91GL00364.
U. S. Inan,, W. A. Sampson, and Y. N. Taranenko, (1996a), Space-time structure of lower ionospheric optical flashes and ionization changes produced by lightning EMP. Geophys. Res. Lett., 23, 133.
P. J. Kellogg, and M. Weed, (1968), Balloon measurements of ionospheric electric fields. In Proceedings of the Fourth International Conference on the Universal Aspects of Atmospheric Electricity, Tokyo.
P. R. Krehbiel, (1986), The electrical structure of thunderstorms in the earth’s electrical environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press.
P. R. Krehbiel, J. A. Riousset, V. P. Pasco, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, (2008), Upward electrical discharges from thunderstorms. Nature, 1, 233-237.
C. L. Kuo, A. B. Chen, Y. J. Lee, R. R. Hsu, H. T. Su, S. A. Cummer, L. C. Lee, H. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, (2007), Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 112, A11312. doi:10.1029/2007JA012407.
C. L. Kuo, J. K. Chou, L. Y. Tsai, A. B. Chen, H. T. Su, R. R. Hsu, L. C. Lee, S. A. Cummer, H. U. Frey, S. B. Mende, and Y. Takahashi, (2009), Discharge processes, electric fields and electron energy in ISUAL-recorded gigantic jets. J. Geophys Res., 114, A04314, doi:10.1029/2008JA013791.
A. Lyons, and E. R. Williams (2003), Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.
D. Mackerras, (1985), Automatic short-range measurement of the cloud flash to ground flash ratio in thunderstorms, J. Geophys. Res., 90(D4), 6195–6201, doi:10.1029/JD090iD04p06195.
T. C. Marshall, W. Rison, W. D. Rust, M. Stolzenburg, J. C. Willett, and W. P. Winn, (1995), Rocket and balloon observations of electric field in two thunderstorms. J. Geophys. Res., 100, 20815-20828.
G. M. Milikh, K. Papadopoulos, and C. L. Chang, (1995), On the Physics of high altitude lightning. Geophys. Res. Lett., 22, 85.
F. S. Mozer, and R. Serlin, (1969), Magnetospheric electric field measurements with balloons. J. Geophys Res., 74, 4739-4754.
R. E. Orville, G. R. Huffines, R. B. William, L. H. Ronald, and L. C. Cummins (2002), The north american lightning detection network (NALDN)—first results: 1998–2000, Monthly Weather Review, 139, 5, 1305-1322.
V. P. Pasco, U. S. Inan, Y. N. Taranenko, and T. F. Bell, (1995), Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields. Geophys. Res. Lett., 22, 365-368.
V. P. Pasco, U. S. Inan, and T. F. Bell, (1996), Sprites as luminous columns of ionization produced by qusi-electrostatic thundercloud fields. Geophys. Res. Lett., 23, 649-652.
V. P. Pasko, U. S. Inan, and T. F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649.
V. P. Pasco, M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Woods, (2002), Electrical discharge from a thunderstorm top to the lower ionosphere. Nature, 416, 152-154.
I. R. C. A Pinto, O. Pinto Jr., W. D. Gonzalez, S. L. Dutra, J. Wygant, and F. S. Mozer, (1988), Stratospheric electric field and conductivity measurements over electrifiedconvective clouds in the South American region. J. Geophys Res., 93, 709-715.
V.A Rakov, and M. A.Uman, (2003), Lightning physics and Effect, Cambridge University Press.
P. L. Rowland, and R. F. Fernsler, J. D. Huba, and P.A. Bernhart, (1995), Lightning driven EMP in the upper atmosphere. Geophys. Res. Lett., 22, 361.
P. L. Rowland, and R. F. Fernsler, and P. A. Bernhart, (1996), Breakdown of the neutral atmosphere in the D-region due to lightning driven electromagnetic pulse. J. Geophys. Res., 101, 7935.
M. J. Rycroft, and R. G. Harrison, (2011), Electromagnetic atmosphere-plasma coupling the global atmospheric electric circuit. Space Sci. Rev., doi: 10.1007/s11214-011-9830-8.
M. J. Rycroft, R. G. Harrison, K. A. Nicoll, and E. A. Marreev, (2008), An overview of earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev., 137: 83-105, doi: 10.1007/s11214-008-9368-6.
M. M. F. Saba, O. pinto Jr., I. R. C. A. pinto, and O. Mendes Jr., (2000), Stratospheric balloon measurements of electric fields associated with thunder storms and lightning in Brazil. J. Geophys. Res., 105, 18091-18097.
D. D. Sentman, E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites, Geophys. Res. Lett., 22(10), 1205–1208, doi:10.1029/95GL00583.
M. Stolzenburg, T. C. Marshall, and W. D. Rust, (2001), Serial sounding of electric field through a mesoscale convective system. J. Geophys. Res., 106, 12371-12380.
H. T. Su, R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi, (2003), Gigantic jets between a thundercloud and the ionosphere. Nature, 423, 974-976, doi: 10.1038/nature01759.
H. T. Su, T. Huang, C. Kuo, A. B. Chen, R. R. Hsu, S. B. Mende, H. U. Frey, H. Fukunishi, Y. Takahashi, and L. Lee, (2004), Global distribution of TLEs based on the preliminary ISUAL data. AGU Fall Meeting Abstracts, AE51A-03.
Y. N. Taraneko, U. S. Inan, and T. F. Bell, (1993a), Interaction with the lower ionosphere of electromagnetic pulse from lightning: Heating, attachment, and ionization. Geophys. Res. Lett., 20, 1539.
Y. N. Taraneko, U. S. Inan, and T. F. Bell, (1993b), Interaction with the lower ionosphere of electromagnetic pulse from lightning: Excitation of optical emissions. Geophys. Res. Lett., 20, 2675.
J. N. Thomas, B. H. Barnum, E. Lay, R. H. Holzworth, M. Cho, and M. C. Kelley, (2008), Lightning-driven electric fields measured in the lower ionosphere: implications for transient luminous events. J. Geophys. Res., 113, A12306, doi: 10.1029/2008JA013567.
J. N. Thomas, Lightning-driven electric and magnetic fields measured in the stratosphere: implication for sprites. PhD thesis, Univ. of Washington, 2005.
M. A. Uman, The Lightning Discharge. Aademic, San Diego, Calif., 1987.
E. M. Wescott, D. D. Sentman, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: Blue Jets. Geophys. Res. Lett., 22(10), 1209-1212.
E. R. Williams, (1998), The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol. Terr. Phys., 60, 689-692.
C. T. R. Wilson, (1925), The electric field of a thundercloud and some of its effects. Proc. Roy. Soc. London, 37, 32D.
W. P. Winn, C. B. Moore, C. R. Holmes, and L. G. Byerley III, (1978), Thunderstorm on July 16,1975, over Langmuir laboratory: a case study. J. Geophys. Res., 83, 3079-3091.
T. Yukihiro, and Y. Kazuya, (2009), SPRITE-SAT, 7th IAA Symposium on Small Satellites for Earth Observation, IAA-B7-0203.