| 研究生: |
楊心怡 Yang, Sin-Yi |
|---|---|
| 論文名稱: |
Naproxen酯類上離去基對木瓜脂肪分解酵素水解動力分割影響 Effects of the leaving group of (R,S)-naproxen ester on papaya lipase-catalyzed hydrolytic resolution |
| 指導教授: |
陳特良
Chen, Teh-Liang 蔡少偉 Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 水解動力分割 、naproxen酯類 、離去基 、木瓜脂肪分解酵素 、活化 、抑制 、誘導參數 |
| 外文關鍵詞: | hydrolytic resolution, naproxen ester, product inhibition and activation, inductive parameter, leaving group, papaya lipase |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討Naproxen酯類上醯基離去基對木瓜脂肪分解酵素水解動力分割影響。利用Naproxen甲酯、Naproxen乙酯、Naproxen三氟乙酯或Naproxen二甲基胺乙酯為反應基質,在不同溫度之極性含飽和水有機溶劑下反應,研究溶劑與溫度影響,並於45℃下含飽和水的異辛烷之較佳反應條件,進行酵素水解動力學探討。
本研究提出Michaelis-Menten之動力模式中,同時考慮產物醇所含胺、醇官能基,對酵素之活化與抑制作用,以解釋Naproxen酯類受酵素水解之行為。此外發現離去基誘導參數(inductive parameter)會影響酵素活性和選擇性。對有相同的誘導參數的Naproxen二甲基胺乙酯與Naproxen甲酯而言,兩者之酵素反應速率有四十倍的差距,推測可能原因為:二甲基胺乙基與酵素之過渡狀態具有額外氫鍵,造成四面中間分離形成醯化酵素中間體之反應速率變快。
The purpose of this research is aimed to investigate effects of the leaving group of (R,S)-naproxen ester on papaya lipase-catalyzed hydrolytic resolution. Hydrolytic resolution of (R,S)-naproxen esters (naproxen 2,2,2-trifluoroethly ester, naproxen ethyl ester, naproxen dimethylaminoethyl ester and naproxen methyl ester) in water-saturated organic solvents is employed as the model system for studying the effects of solvents and temperature on the lipase activity and enantioselectivity, where 45 ℃ and water-saturated isooctane are beneficial for giving better lipase activity and enantioselectivity. The kinetic analysis using a Michealis-Menten mechanism by coupled with product inhibition and activation was performed. The inductive parameter of leaving group has influence on the lipase activity and enantioselectivity. About 40-fold enhancement of the initial rate for (S)-esters was obtained between naproxen dimethylaminoethyl ester and naproxen methyl ester having the same inductive parameter of 0.01. The dimethylaminoethyl group may provide an additional hydrogen bond in the transition state of the acylation step, and then accelerate the bond-breaking of tetrahedral intermediate forming the acyl enzyme intermediate.
Allenmark, S., Ohlsson, A., Enantioselectivity of lipase-catalyzed hydrolysis of some 2-chloroethyl 2-arylpropanoates studied by choral reversed-phase liquid-chromatography, Chirality, 4, 98-102, 1992.
Azerad, R., Application of biocatalysis in organic synthesis, Bull. Soc. Chim. Fr., 132, 17-51, 1995.
Berglund, P., Controlling lipase enantioselectivity for organic synthesis, Biomol. Eng., 18, 13-22, 2001.
Berglund, P., Controlling lipase enantioaelectivity for organic synthesis, Biomolecular Eng., 18, 13-22, 2001.
Cernia, E., Palocci, C., Soro, S., The role of the reaction medium in lipase-catalyzed esterifications and transesterifications, Chemistry and Physics of Lipids, 93, 157-168, 1998.
Chen, C. C., Chen, T. L., Tsai, S.W., Altering lipase activity and enantioselectivity in organic media using organo-soluble bases: Implication for rate-limiting proton transfer in acylation step, Biotechnol. Bioeng., 94, 201-208, 2006.
Chen, C. C., Tsai, S. W., Carica papaya lipase: a novel biocatalyst for the enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester, Enzyme and Microbial Technol., 36 , 127–132, 2005.
Chen, C. C., Tsai, S. W., Villeneuve P., Enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated solvents via lipases from Carica pentagona Heilborn and Carica papaya , J. Mol. Cat. B: Enzymatic, 34, 51–57, 2005.
Ducret, A., Trani, M., Lortie, R., Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity, Enzyme and Microbial Technol., 22, 212-216, 1998.
Eftink, M. R., Anusiem, A. C., Biltonen, R. L., Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease, Biochemistry, 22, 3884-3896, 1983.
Gandhi, N. N., Applications of lipase, J. Am. Oil Chem. Soc., 74, 621-634, 1997.
Garcia, R., Carcia, T., Martinez, M., Aracil, J., Kinetic modeling of the synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester by an immobilized lipase, Biochem. Eng. J., 5, 185-190, 2000.
Ghanem, A., Application of lipase in kinetic resolution of racemates, Chirality, 17, 1-15, 2005.
Hansch, C., Leo, A., Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91, 165-195, 1991.
Harrington, P. J., Lodewijk, E., Twenty years of naproxen technology, organic process research & development, 1, 72-76, 1997.
Hazarika, S.,Goswami, P., Dutta, N. N., Lipase catalysed transesterification of 2-o-benzylglycerol with vinyl acetate: solvent effect , Chem. Eng. J., 94, 1-10, 2003.
Jaeger, K. E., Reetz, M. T., Microbial lipases form versatile tools for biotechnology, Trends Biotechnol., 16, 396-403, 1998.
Kim, J., Clark, D. S., Dordick, J. S., Intrinsic Effects of Solvent Polarity on Enzymic Activation Energies, Biotechnol. Bioeng., 67, 112-116, 1999.
Klibanov, A. M., Why are enzymes less active in organic solvents than in water?, Trends Biotechnol., 15, 97-101, 1997
Laane, C., Boeren, S., Vos, K., Veeger, C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., 30, 81-87, 1987.
Lemieux, R. U., The origin of the specificity in the recognition of oligosaccharides by proteins, Chem. Soc. Reviews, 18, 347-374, 1989.
Lin, C. N., Tsai, S. W., Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis, Biotechnol. Bioeng., 69, 31-38, 2000.
Markweg-Hanke, M., Lang, S., Wanger, F., Dodecanoic acid inhibition of a lipase from Acinetobacter sp. OPA 55, Enzyme Microb. Technol., 17, 512-516, 1995.
Mingarro, I., Abad, C., Braco, L., Interfacial activation-based molecular bioimprinting of lipolytic enzymes, Proc. Natl. Acad. Sci. USA., 92, 3308-3312, 1995.
Mukesh, D., Jadhav, S., Banerji, A. A., Thakkar, K., Bevinakatti, H. S., Lipase-catalysed esterification reactions-experimental and modeling studies, J. Chem. Tech. Biotechnol., 69, 179-186, 1997.
Muralidhar, R. V., Chirumamilla, R. R., Marchant, R., Ramachandran, V. N., Ward, O. P., Nigam, P., Understanding lipase stereoselectivity, World J. Microb. & Biotechnol., 18, 81-97, 2002.
Ng, I. S., Tsai, S. W., Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents, Biotechnol. Bioeng., 91, 106-113, 2005.
Patel, R. K., Stereoselective biocatalysis, Marcl Dekker, New York, 2000.
Phillips, R. S., Temperature modulation of the stereochemistry of enzymatic
catalysis: prospects for exploitation, Trends in biotechnology, 14, 13-16, 1996.
Schmid, R. D., Verger, R., Lipases: Interfacial Enzymes with Attractive Applications, Angew. Chem. Int. Ed. 1998, 37, 1608-1633, 1998.
Smith, G. M., The nature of enzymes, Biotech., 9, 7-72 , 1995.
Thakore, Y., Enzymes for industrial applications, Business Communications Company, 2004.
Theil, F., Enhancement of selectivity and reactivity of lipases by additives, Tetrahedron, 56, 2905-2919, 2000.
Valivety, R. H., Halling, P. J., Macrae, A. R., Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents, Biochimica et Biophysica Acta (BBA) , 1118, 218, 1992.
Wehtje, E., Adlercreutz, P., Water activity and substrate concentration effects on lipase activity, Biotechnol. Bioeng., 55, 798-806, 1997.
Zaks, A., Klibanov, A. M., Enzyme-catalyzed process in organic solvent, Proc .Natl. Acad. Sci. USA., 82, 3192-3196, 1985.
Zaks, A., Klibanov, A. M., Enzyme catalysis in nonaqueous solvents, J. Biol. Chem., 263, 3194-3201, 1988.