簡易檢索 / 詳目顯示

研究生: 邱淑琳
Chiu, Su-Lin
論文名稱: 磊晶單雙晶氧化鋅摻雜鈷稀磁性半導體鐵磁性來源之研究
Studies of magnetic origin in epitaxial single- and bi-crystal Co:ZnO diluted magnetic semiconductor
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 缺陷磁性半導體氧化鋅
外文關鍵詞: defect, magnetic semiconductor, zinc oxide, cobalt
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用分子束磊晶系統,在不同晶相的基板Al2O3(11-20)與 Al2O3(0001)上成長氧化鋅摻雜鈷多層膜([ZnO20Å/Co1Å]25),此兩組樣品的成長溫度、壓力、鍍率都盡量控制在相同條件之下。
    由RHEED與XRD實驗結果證實,使用不同晶相的基板能夠得到具有不同結構的樣品:(1)Al2O3(11-20)基板能夠得到高品質的單晶薄膜,(2)Al2O3(0001)基板則會得到缺陷較多的雙晶薄膜。此外,藉著各種磁電性量測工具(SQUID、XAS、Hall effect),得知缺陷較少之單晶薄膜自由載子濃度較高(約1.16×10^20 [1/cm3]),室溫鐵磁訊號微弱;缺陷較多之雙晶薄膜自由載子濃度較低(約4.38×10^19 [1/cm3]),卻具有較明顯的室溫鐵磁訊號。
    故證實氧化鋅摻雜鈷多層膜的缺陷多寡的確與室溫鐵磁性有很強的關聯性,且本實驗之單雙晶樣品的缺陷差別大多以晶界為主。

    In this study, we have grown [ZnO20Å/Co1Å]25 on Al2O3(11-20) and Al2O3(0001) substrates in Molecular Beam Epitaxy (MBE) system. The samples grown on these two types of substrates are carrier out in the same growth conditions (growth temperature, deposition rate, and working pressure).
    The investigation of RHEED and XRD are concluded as follow:(1)High quality single crystal thin film (SC) grown on Al2O3(11-20) ; (2)Bi-crystal thin film (BC) grown on Al2O3(0001). This result also can imply that defects of SC should be less than these of BC. Furthermore, from the results of SQUID, XAS and Hall effect, we know that room-temperature ferromagnetism of SC with higher free–carrier concentration (Nc~1.16×10^20 [1/cm3]) is weaker than that of BC with lower Nc (~4.38×10^19 [1/cm3]).
    So, we found that room-temperature ferromagnetism of Co-doped ZnO multilayer is strongly correlated with structure defects. The main difference of defects between SC and BC should be grain-boundary defects.

    第一章 緒論 1-1 前言…………………………………………………………1 1-2 氧化鋅薄膜特性簡介………………………………………5 1-3 文獻回顧……………………………………………………7 1-3-1 結構相關文獻………………………………………7 1-3-2 磁性來源相關文獻………………………………13 1-4 研究動機……………………………………………………21 Reference………………………………………………………………22 第二章 相關理論介紹 2-1 平均場理論…………………………………………………23 2-2 磁性來源機制………………………………………………25 2-2-1 雙交換耦合機制…………………………………25 2-2-2 交互巡迴式鐵磁性………………………………26 2-2-3 侷限載子式鐵磁性………………………………28 2-2-4 束縛極化子模型…………………………………29 Reference………………………………………………………………31 第三章 儀器介紹與實驗流程 3-1 實驗製成儀器-分子束磊晶系統…………………………32 3-1-1 薄膜磊晶成長模式………………………………37 3-2 實驗量測儀器………………………………………………39 3-2-1 反射式高能電子繞射儀…………………………39 3-2-2 X-ray繞射儀………………………………………41 3-2-3 超導量子干涉磁量儀……………………………42 3-2-4 X-ray吸收光譜……………………………………44 3-2-5 霍爾效應量測……………………………………53 3-3 實驗步驟……………………………………………………55 3-3-1 系統真空環境之準備……………………………55 3-3-2 基板的準備………………………………………56 3-3-3 樣品成長…………………………………………57 3-3-4 樣品量測…………………………………………58 Reference………………………………………………………………60 第四章 實驗結果與討論…………………………………………62 4-1 Co/ZnO多層膜於不同基板上的成長機制與結構分析……63 4-1-1 Al2O3(11-20)基板的磊晶情況,其RHEED與XRD之 結果與討論………………………………………63 4-1-2 Al2O3(0001)基板的磊晶情況,其RHEED與XRD的結 果與討論…………………………………………66 4-1-3 Co/ZnO多層膜成長於不同基板上的結果………70 4-2 單雙晶樣品之磁性分析……………………………………75 4-3 X光吸收光譜………………………………………………79 4-4 電性分析……………………………………………………85 4-4-1 電阻率……………………………………………85 4-4-2 霍爾效應量測……………………………………85 4-4-3 電性與結構關係之討論…………………………87 4-5 磁性來源的討論……………………………………………90 Reference………………………………………………………………91 第五章 結論………………………………………………………92 附錄 附錄A 異常霍爾效應量測………………………………………94 附錄B 單晶樣品扣除基板訊號…………………………………96

    [1.1]黃榮俊、許華書,物理雙月刊,26期4卷2004年8月,p.599
    [1.2]胡裕民,物理雙月刊,26期4卷2004年8月,p.587
    [1.3] H.Ohno,Science 281 (1998) 951
    [1.4] J. K. Furdyna and J. Kossut,Semiconductor and
    Semimetals vol.25 (1998)
    [1.5] T. Dietl,Semicond. Sci. Technol.(2002)17(14),377
    [1.6] G. Neumann,Phys. Status Solids,B105 (1981) 605
    [1.7] Keiichiro Sakurai et al.,Mat. Res. Soc. Symp.
    Vol.587 (2000)
    [1.8] C. Liu,S. H. Chang and T. W. Noh et al.,Applied
    Physics Letters 90 (2007) 011906
    [1.9] T. C. Kaspar,S. M. Heald et al.,Physics Review
    Letters 95 (2005) 217203
    [1.10] C. Song,S. N. Pan and X. J. Liu et al.,Journal of
    Physics:Condensed Matter 19 (2007) 176229
    [1.11] Ngyyen Hoa Hong et al.,Physical Review B 72 (2005)
    045336
    [1.12] X. H. Xu,H. J. Blythe and M. Ziese et al.,New
    Journal of Physics 8 (2006) 135
    [2.1] T. Deitl¸and H. Ohno et al.,Science 287 (2000) 1019
    [2.2] C. Zener et al.,Phys. Rev. 81 (1950) 440
    [2.3] Dana A. Schwartz and Daniel R. Gamelin,Adv. Mater.
    16 (2004) No.23-24
    [2.4] C. Zener,Phys. Rev. 82 (1951) 403
    [2.5] P. W. Anderson and H. Hasegawa,Phys. Rev. 100
    (1955) 675
    [2.6] D. R. Gamelin and E. L. Bominaar et al.,J. Am.
    Chem. Soc. 118 (1996) 8085
    [2.7] H. Akai et al.,Phys. Rev. Lett. 81 (1998) 3002
    [2.8] J. Konig et al.,Phys. Rev. Lett. 84 (2000) 5628
    [2.9] J. Konig et al.,Phys. Rev. Lett. 86 (2001) 5637
    [2.10] K. A. Griffin and A. B. Pakhomov et al.,Phys. Rev.
    Lett. 94 (2005) 157204
    [2.11] V. I. Litvinov et al.,Phys. Rev. Lett. 86 (2001)
    5593
    [2.12] M. Berciu et al.,Phys. Rev. Lett. 87 (2001) 107203
    [2.13] J. M. D. Coey et al.,Nature Materials,vol.4
    (2005) 173
    [3.1] See e. g. “Molecular Beam Epitaxy”,ed. by M. A.
    Herman and H. Sitter (Berlin Springer,1989)
    [3.2] F. C. Frank and J. H. Van der Merwe,Proc. Roy. Soc.
    A198 (1948) 216
    [3.3] M. Volmer and A. Weber,Z. Phys. Chem. 119 (1926) 277
    [3.4] N. Stranski and L. Krastanov,Ber. Akas. Wiss. Wien
    146 (1938) 797
    [3.5] J. C. A. Huang,Ph.D. Thesis,Univ. of Illinois,
    p.77 (1992)
    [3.6] A. Zangwill,in Physics at Sufaces (Cambridge 1988)
    p428
    [3.7] R. Kern,G. LeLay and G. Metois,in Current Topics
    in Material Science,ed. by E. Kalids (North-
    Holland,Amsterdam, 1979) Vol.3,Ch3
    [3.8] E. Bauer,Z Krist,110 (1958) 372
    [3.9] S. M. Durbin,J. E. Cunningham and C. P. Flynn,J.
    Phys. F12 (1982) L75
    [3.10] P. K. Larsen and P. J. Dobson,Reflection High-
    Energy Electron Diffraction and Reflection Electron
    Imaging of Surface,NATO ASI Series
    [3.11] Soshin Chikazumi and Stanley H. Charap “Physics of
    Magnetism” (1972)
    [3.12] 國立台灣大學物理學系,楊鴻昌教授,科學新知,6期12卷
    1991年,p72-79
    [3.13] D. C. Koningsberger and R. Prins,X-ray Absorption
    principles,applications,techniques of EXAFS,
    SEXAFS and XANES (1988) 574
    [3.14] J. J. Rehr and R. C. Albers,Rev. Mod. Phys. 72
    (2000) 621
    [3.15] 半導體元件物理與製作技術(第二版),施敏、黃調元
    (2006) p.96-98
    [4.1] Technical data sheets from Union Carbide Co.
    [4.2] Th. Becker et al.,Phys. Rev. B 65 (2001) 115401
    [4.3] Kevin R. Kittilstved and Daniel R. Gamelin et al.,
    Phys. Rev. Lett. 97 (2006) 037203
    [4.4] C. Song,S. N. Pan and X. J. Liu et al.,Journal of
    Physics:Condensed Matter 19 (2007) 176229
    [4.5] J. W. ORTON and M. J. POWELL,Rep. Prog. Phys.,
    Vol.43 (1980) 81

    下載圖示 校內:2008-08-10公開
    校外:2008-08-10公開
    QR CODE