簡易檢索 / 詳目顯示

研究生: 陳俊宏
Chen, Chun-hung
論文名稱: 柔切技術在高功因電力轉換器上之應用:新型零電壓轉移單級高功因順向式AC/DC整流器
Soft-Switching Technique Applied to A HPFC Converter: A Novel ZVT-PWM Single-Stage HPFC Forward AC/DC Rectifier
指導教授: 林鐘烲
Lin, Jong-Lick
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 147
中文關鍵詞: 單級高功因順向式電力轉換器零電壓轉移
外文關鍵詞: forward converter, zero-voltage-transition, single-stage high power factor
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,為了改善電力品質,必須具有高功因校正電路,然而一般高功因校正電路之電力轉換效率不高。因此,吾人遂應用柔切技術於高功因校正電力轉換器,以設計出新型零電壓轉移(ZVT)單級高功因順向式電力轉換器。
    論文中應用元件移位法及接枝法,將降-升壓式(buck-boost)與順向式(forward)電力轉換器進行合併,並以諧振方法作為變壓器磁通之重置,設計出新型單級高功因順向式電力轉換器。當前級的降-升壓式電力轉換器操作於DCM時,天生就具有功因校正能力,故無須設計內迴路電流控制器。而後級為順向式電力轉換器,在磁通重置的過程中,激磁電流會回到零,故磁化電感電流係操作於DCM。此外,輸出電感電流亦操作於DCM,因此,儲能電容電壓不易受到負載變動的影響而產生高電壓應力。
    接著,吾人將ZVT柔切技術應用於上述單級高功因電力轉換器中,使轉換器之主開關由off切換為on之前,使開關兩端電壓先共振至零,再進行切換,以降低切換損失,提升電力轉換效率。
    論文中,針對提出的新型ZVT單級HPFC順向式電力轉換器,進行動作原理分析,再以平均化法,推導半線電壓週期 下之平均化狀態方程式。再依據吾人設定之電氣規格與轉換器之操作條件,設計轉換器之直流工作點以求得元件值( 及 )。最後,針對設計之直流工作點作線性化,以推導轉換器之小信號數學模式。
    在推導小信號數學模式過程中,因狀態方程式為非線性微分方程式,其中包含非常複雜的積分項,無法直接求出各項在直流工作點的偏導數。因此,吾人應用指導教授Lin提出之圖解法,即可簡易地求出每一個偏導數。最後,應用IsSpice模擬軟體與電路實作之結果,驗證理論推導之正確性。
    由實作結果顯示:當輸出功率為100 W時,新型單級高功因電力轉換器之功率因數為0.99、電力轉換效率為73 %,而新型ZVT單級HPFC順向式電力轉換器之功率因數為0.98、電力轉換效率為80 %。因此,本論文所提出之新型ZVT單級HPFC順向式轉換器不僅具有高功率因數,並可驗證柔切技術確實能提升電力轉換效率。
    最後,利用古典控制理論設計PI控制器,由實作結果可知:加入控制器能使轉換器之輸出電壓不受輸入線電壓與負載變動之影響,達到輸出穩壓之性能。

    Generally, in order to improve the power quality, a high power factor correction circuit is necessarily needed. However, the power efficiency of high power factor correction converters is not high. Thus the soft-switching technique is applicable to high power factor correction power converters. Accordingly, a novel zero-voltage-transition (ZVT) single-stage high power factor correction forward converter is proposed in this thesis.
    By means of components placement and synchronous switching technology, the buck-boost and forward cells are combined. Additionally, the flux resetting of the transformer is maintained by a resonant method. Thus a novel single-stage high power factor correction forward converter is proposed. When the buck-boost cell, the first stage, operates in DCM, the proposed single-stage power converter exhibits an inherent gift of high power factor. Hence, the inner loop current controller is not necessary. Moreover, the transformer of the forward cell, the second stage, is achieved flux resetting, and the magnetizing inductor current starts and ends at zero. It means that the magnetizing inductor current also operates in DCM. In addition, since the output inductor current operates in DCM, the voltage across the bulk capacitor is not high and independent of the load variations.
    To proceed, the ZVT soft-switching technique is applied to the proposed single-stage power converter. The voltage across the main switch is decreased due to the resonance, before the switch changes state form off to on. It means that the main switch turns on under ZVS operation. Thus, the switching losses are reduced, and the power efficiency is increased.
    In this thesis, the operating principle of the proposed novel ZVT single-stage HPFC forward converter is presented herein. Moreover, the averaged state equations over one half line period are derived by the averaging method. Then, based on the design specifications and operation conditions, the operating point can be determined, and thus the component values, and , are designed. Finally, the small-signal model linearized around the operating points is then derived.
    In the process of deriving the small-signal model, the state equations are nonlinear differential equations, which contain complicated integrals, so that the partial derivatives around the operating points are quite difficult to be obtained. Therefore, the graphical method proposed by Professor Lin is adopted to easily derive partial derivatives. Finally, the theoretical analysis is validated by IsSpice simulations and experimental results.
    Notably, it reveals from experimental results that the novel single-stage HPFC forward converter without ZVT soft-switching technique exhibits the power factor of and power efficiency of for output power of . However, the proposed novel ZVT single-stage HPFC forward converter with output power of exhibits power factor of and power efficiency of . Consequently, the ZVT soft-switching technique can be used to effectively improve the efficiency of the novel single-stage forward power converter.
    Finally, based on the classical control theory, a PI controller is designed and the experimental results show that output voltage regulation can be achieved despite of the line voltage and load variations.

    頁次 中文摘要 I 英文摘要 III 誌謝 V 目錄 VII 圖表目錄 X 第一章 緒論 1-1 1.1 功因校正電路的發展過程 1-2 1.2 DC/DC電力轉換器 1-3 1.2.1 線性式電力轉換器 1-4 1.2.2 切換式電力轉換器 1-4 1.3 AC/DC電力轉換器 1-5 1.4 本實驗室相關論文回顧 1-6 1.5相關論文回顧 1-9 1.6 本論文研究方向 1-10 1.7 本文結構 1-10 第二章 功率因數之校正 2-1 2.1 功率因數之探討 2-1 2.2 功因校正電路之演進 2-4 2.3 進相電容器與自動功率因數調節器 2-6 2.4 功因校正電力轉換器 2-6 第三章 柔性切換技術之發展 3-1 3.1 傳統PWM電力轉換器 3-1 3.2 柔切式電力轉換器 3-2 第四章 新型單級HPFC順向式電力轉換器之設計 4-1 4.1 元件移位法 4-2 4.1.1 元件移位法的應用 4-3 4.2 接枝法 4-4 4.2.1 接枝法之應用 4-6 4.3 新型單級HPFC順向式電力轉換器之設計 4-9 4.3.1 新型單級HPFC順向式電力轉換器之初步架構 4-10 4.3.2 新型單級HPFC順向式電力轉換器之磁通重置方法 4-12 第五章 新型單級HPFC順向式電力轉換器之電路動作原理分析 5-1 5.1電路操作模式 5-1 5.2 DCM+DCM+DCM之電路動作原理分析 5-2 第六章 新型ZVT單級HPFC順向式電力轉換器之設計理念與電路 動作原理分析 6-1 6.1 ZVT電路拓樸的設計 6-1 6.2 新型ZVT單級HPFC順向式電力轉換器之電路動作原理分析 6-3 6.2.1 轉換器前瞬態兩個階段之電路動作分析 6-5 6.2.2 轉換器第三階段之電路動作分析 6-8 6.2.3 轉換器後瞬態兩個階段之電路動作分析 6-8 6.2.4 轉換器後四個階段之電路動作分析 6-11 第七章 新型ZVT單級HPFC順向式電力轉換器之數學模式推導 7-1 7.1 切換週期 平均化數學模式之推導 7-1 7.2 半線電壓週期 平均化數學模式之推導 7-8 7.2.1 動態模式推導 7-8 7.2.2 直流穩態分析 7-10 第八章 轉換器之元件規格設計 8-1 8.1 轉換器之元件規格設計 8-1 第九章 小信號數學模式 9-1 9.1交流小信號分析 9-1 9.2脈波寬度調變器(PWM)之小信號交流等效增益 9-6 附錄9A 圖解法之應用:求解轉移函數之係數 9A-1 第十章 轉換器模擬驗證與實作結果 10-1 10.1 IsSpice模擬驗證 10-1 10.2 轉換器數學模式之量測 10-4 10.3 實作結果 10-4 10.4 實作心得 10-10 附錄10A 控制器設計與實作結果 10A-1 第十一章 結論與未來展望 11-1 11.1 結論 11-1 11.2 未來展望 11-2 參考文獻 自述

    參考文獻
    [CGSU94] Cobos, J. A., O. Garcia, J. Sebastian and J. Uceda, “Resonant Reset Forward Topologies for Low Output Voltage on Board Converters,” Proceedings of IEEE Applied Power Electronics Conference and Exposition, Vol. 2, pp. 703-708, 1994.
    [GALB00] Gu, W., J. A. Abu-Qahouq, S. Luo and I. Batarseh, “A ZVT-PWM Single Stage PFC Converter with an Active Snubber,” IEEE Midwest Symposium on Circuits and Systems, Vol. 1, pp. 102-105, 2000.
    [JJD06] Jang, Y., M. M. Jovanovic and D. L. Dillman, “Soft-Switched PFC Boost Rectifier with Integrated ZVS Two-Switch Forward Converter,” IEEE Trans. on Power Electronics, Vol. 21, No. 6, pp. 1600-1606, 2006.
    [KWZB97] Kornetzky, P., H. Wei, G. Zhu and I. Batarseh, “A Single-Switch Ac/Dc Converter with Power Factor Correction,” Proceeding of PESC97, pp. 527-525 1997.
    [LHH07] Lin, J.-L., S.-K. Huang and J.-C. Hsieh, “A Novel Single-Stage Parallel High Power Factor Correction AC/DC Flyback Converter: Dynamics and Control,” Revised to Journal of the Chinese Institute of Engineers, 2007.
    [LCY05] Lin, J. L. and M. Z. Chang and S. P. Yang, “Synthesis and Analysis for a Novel Single-Stage Isolated High Power Factor Correction Converter,” IEEE Trans. on Circuits and Systems Part I, Vol. 52, No. 9, pp. 1928-1939, 2005.
    [LHT05] Lin, J. L., J. C. Hsieh and T. H. Tsai, “Dynamics Analysis of a Single-Stage Isolated High Power Factor Converter with a Magnetic Switch,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 3, pp. 643-652, 2005.
    [LHY04] Lin, J. L., J. C. Hsieh and I. C. Yeh, “A Novel ZCZVT Soft-Switching Single-Stage High Power Factor Correction Converter,” IEEE Asia-Pacific Conference on Circuits and Systems, Vol. 2, pp. 657-660, 2004.
    [LHT05] Lin, J. L., J. C. Hsieh and T. H. Tsai, “Dynamics Analysis of a Single-Stage Isolated High Power Factor Converter with a Magnetic Switch,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 3, pp. 643-652, 2005.
    [LiH00] Lin, J. L. and H. Y. Hsieh, “Dynamics Analysis and Controller Synthesis for Zero-Voltage-Transition PWM Power Converters,” IEEE Trans. on Power Electronics, Vol. 15, No. 2, pp. 205-214, 2000.
    [LiC03] Lin, J. L. and C. H. Chang, “Small Signal Modeling and Control of ZVT-PWM Boost Converters,” IEEE Trans. on Power Electronics, Vol. 18, No. 1, pp. 2-10, 2003.
    [LiH05] Lin, J. L. and C. H. Hsia, “Dynamics and Control of ZCZVT Boost Converters,” IEEE Trans. on Circuits and Systems , Vol. 52, No. 9, pp. 1919-1927, 2005.
    [LYL05] Lin, J. L., S. P. Yang and P. W. Lin, “Small-Signal and Controller Design for an Isolated Zeta Converter with High Power Factor Correction,” Electric Power Systems Research, Vol. 76, No. 1-3, pp. 67-76, 2005.
    [LYY06] Lin, J. L. and W. K. Yao and S. P. Yang, “Analysis and Design for a Novel Single-Stage High Power Factor Correction Diagonal Half-Bridge Forward AC/DC Converter,” Accepted for publication in IEEE Trans. on Circuits and Systems Part I.
    [MEI92] Madigan, M., R. Erickson and E. Ismail, “Integrated High-Quality Rectifier-Regulators,” IEEE PESC, pp. 1043-1051, 1992.
    [MJLJ99] Moschopoulos G., P. K. Jain, Y. Liu and G. Joos, “A Zero-Voltage-Switched PWM Boost Converter with an Energy Feedforward Auxiliary Circuit,” IEEE Trans. on Power Electronics, Vol. 14, No. 4, pp. 653-662, 1999.
    [MoJ03] Moschopoulos G., and P. Jain, “Single-Stage ZVS PWM Full-Bridge Converter,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 39, No. 4, pp. 1122-1133, 2003.
    [SiE92] Singer, S. and R. W. Erickson, “Canonical Modeling of Power Processing Circuits Based on the POPI Concept,” IEEE Trans. Power Electronics, Vol. 7, No. 1, pp. 37-43, 1992.
    [StH00] Stein, C. M. O. and H. L. Hey, “A True ZCZVT Commutation Cell for PWM Converters,” IEEE Trans. on Power Electronics, Vol. 15, No. 1, pp. 185-193, 2000.
    [TsC98] Tseng, C. J. and C. L. Chen, “Novel ZVT-PWM Converters with Active Snubbers,” IEEE Trans. on Power Electronics, Vol. 13, No. 5, pp. 861-869, 1998.
    [WYL95] Wu, T. F., T. H. Yu and Y. C. Liu, Generation of Power Converters with Graft Technique,”Proceedings of EPE’95, pp. 370-376, 1995.
    [YLC06] Yang, S. P., J. L. Lin and S. J. Chen, “A Novel ZCZVT Forward Converter with Synchronous Rectification,” IEEE Trans. on Power Electronics, Vol. 21, No. 4, pp. 912-922, 2006.
    [劉君上96] 劉君上,共振式DC-DC電源轉換器之分析與強健控制器之設計,碩士論文,國立成功大學工程科學系,1996。
    [邱士峰97] 邱士峰,半共振式零電流切換型暨PWM電流回授型之DC-DC電源轉換器:製作分析及控制器之設計,碩士論文,國立成功大學工程科學系,1997。
    [謝欣穎98] 謝欣穎,零電壓轉移柔性切換電源轉換器之動態模式分析及控制器之研製,碩士論文,國立成功大學工程科學系,1998。
    [張景華99] 張景華,升壓型零電壓轉移柔切式電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,1999。
    [施錕鴻99] 施錕鴻,升壓型高功率因數電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,1999。
    [游志雄00] 游志雄,零電壓轉移高功率因數電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2000。
    [劉智豪00] 劉智豪,單級隔離式高功因電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2000。
    [蔡璨鴻01] 蔡璨鴻,單級隔離式高功因磁性開關電力轉換器之模式分析,碩士論文,國立成功大學工程科學系,2001。
    [夏存孝01] 夏存孝,零電流零電壓轉移柔切式升壓型電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2001。
    [林保偉02] 林保偉,基本電力轉換器功因校正能力性能分析與隔離式Zeta電力轉換器之模式推導及控制器設計,碩士論文,國立成功大學工程科學系,2002。
    [張銘智02] 張銘智,嶄新單級隔離式高功因電力轉換器之分析與控制器之設計,碩士論文,國立成功大學工程科學系,2002。
    [劉育伶02] 劉育伶,非浮接開關之零電流零電壓轉移柔切式升壓型電力轉換器之分析研製及控制器設計,碩士論文,國立成功大學工程科學系,2002。
    [葉怡君03] 葉怡君,新型零電流零電壓轉移柔切式高功因AC/DC整流器,碩士論文,國立成功大學工程科學系,2003。
    [黃碩國03] 黃碩國,嶄新單級並聯返馳式高功因電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2003。
    [施奕丞03] 施奕丞,低電壓應力之嶄新單級隔離式高功因電力轉換器之模式分析與控制器設計,碩士論文,國立成功大學工程科學系,2003。
    [葉怡君03] 葉怡君,新型零電流零電壓轉移柔切式高功因AC/DC整流器,碩士論文,國立成功大學工程科學系,2003。
    [賴建志04] 賴建志,具有同步整流技術之零電流零電壓柔切轉移順向式DC/DC電力轉換器之研製,碩士論文,國立成功大學工程科學系,2004。
    [陳學展04] 陳學展,新型順向式單級高功因電力轉換器之分析與控制器設計,碩士論文,國立成功大學工程科學系,2004。
    [賴建志04] 賴建志,具有同歩整流技術之零電流零電壓柔切轉移順向式DC/DC電力轉換器之研製,國立成功大學工程科學系,2004。
    [唐碩甫04] 唐碩甫,零電壓柔性切換半橋式DC/DC電力轉換器之分析研製及控制器設計,國立成功大學工程科學系,2004。
    [王秋豐05] 王秋豐,新型零電壓切換推挽式DC/DC電力轉換器之分析與研製,國立成功大學工程科學系,2005。
    [葉淙益05] 葉淙益,具同步整流技術之倍流整流零電壓柔性切換非對稱半橋式DC/DC電力轉換器之分析與研製,國立成功大學工程科學系,2005。
    [姚偉凱05] 姚偉凱,嶄新單級高功因混橋型順向式電力轉換器之分析與設計,碩士論文,國立成功大學工程科學系,2005。
    [陳建仰06] 陳建仰,嶄新單級高功因對角半橋型反馳式電力轉換器之LFR動態模式分析與設計,碩士論文,國立成功大學工程科學系,2006。
    [蘇豪斌06] 蘇豪斌,具同步整流技術之新型零電壓切換對角半橋型順向式DC/DC電力轉換器之分析與研製,碩士論文,國立成功大學工程科學系,2006。
    [葉宇展07] 葉宇展,雜訊分析與防制對策之研究與驗證,碩士論文,國立成功大學工程科學系,2007。
    [王順忠98] 王順忠,電力電子學,東華書局,1998年2月初版。
    [江炫樟04] 江炫樟,電力電子學,詮華書局,2003年初版

    下載圖示 校內:2008-08-29公開
    校外:2008-08-29公開
    QR CODE